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A 33~170 GHz cascode amplifier based on InP DHBT technology
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Abstract: In this paper, a wide band cascode power amplifier working at 33~170 GHz is designed, based on the
500 nm InP dual-heterojunction bipolar transistor (DHBT) process. Two pairs of parallel input and output stub
lines can effectively expand the working bandwidth. The output coupling line compensates the high frequency
transmission. The measured results show that the maximum gain of the amplifier is 11. 98 dB at 115 GHz, the rel-
ative bandwidth is 134. 98 %, the gain flatness is +2 dB, the gain is better than 10 dB and the output power is bet-
ter than 1 dBm in the operating bandwidth.
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Introduction can be used as a basic unit to form a distributed amplifi-

er. The reported cascode amplifiers cover the DC-110
GHz*, 110~170 GHz"*, and 140~250 GHz"" frequen-

cy bands, however, designers always have to make a

With the increasing demand for high data rate and
high resolution, it is foreseeable that millimeter wave ra-
dar, imaging and communication systems will become
are widely applied "' . But at higher frequencies, the
achievable gain of tunable amplifiers is low, while dis-

trade-off between bandwidth and gain.
In this paper, an ultra-wideband cascode amplifier

tributed amplifiers inherently have wider bandwidths.
Therefore the distributed topology is an important way to
realize the wide band amplifier. In addition, the cascode
amplifier structure also has wide band characteristics and

Received date: 2022- 07- 02, revised date: 2023- 01- 08

operating at 33~170 GHz is demonstrated. The proposed
amplifier can achieve 134. 98% relative bandwidth and
maintain a gain flatness of +2 dB, with the small signal
gain better than 10 dB and the output power better than 1
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dBm over the operating bandwidth.
1 InP DHBT technology

The monolithic microwave integrated circuit
(MMIC) was fabricated based on 500-nm dual-hetero-
junction bipolar transistor (DHBT) process on 3 inch
semi-insulating InP substrate using molecular-beam epi-
taxy (MBE) manufactured by Nanjing Electronic Devic-
es Institute. An InGaAsP composite collector was used to
eliminate the current blocking effect caused by the B-C
heterojunction conduction band spike™. The composite
collector area consist of an InGaAs layer, a step-graded
InGaAsP layer, and a 8-doping layer, all the layer struc-
tures are listed in Table 1", The width of emitter con-
tact is 500 nm, and two 300 nm wide base contacts at its
both side. A transit frequency of 300 GHz and a maxi-
mum oscillation frequency above 400 GHz are extracted,
as shown in Fig. 1. The process provides three wiring
metal layers and compact interconnect vias between
them. The MIM capacitor with 0. 26 fF/pum’ capacitance
density and 25 Q/square TaN TFR are also available™".

Table 1 Layer structure of the InGaAs/InP DHBT
%1 InGaAs/InP & DHBT SMNE# #I £#

Layer Material Thickness/nm Dopant
Emitter contact InGaAs 200 Si
Emitter InP 200 Si
Base InGaAs 35 C
Setback layer InGaAs 30 Si
Step—graded InGaAsP 50 Si
d—doping InP 5 Si
Collector InP 150 Si
Collector contact InGaAs 50 Si
Sub—collector InP 200 Si
InP substrate 100 pm S. L.

The schematic diagram of the multilayer integrated
circuit process used in this paper is shown in Fig. 2. The
thickness of the metal layer and corresponding BCB layer
are all on the order of 1pum'. Each layer of metal can
be used as a signal line or a common ground layer. How-
ever, when M2 or M3 is used as the ground, the intercon-
nection structures are more complicated and will bring
more parasitic mode effects. Therefore, M1 is used as
the common ground, in which case only the windows
around the series capacitors are opened that will greatly
reduce the leak area™. Thin-film micro-strip lines
(TFMLs) can be realized with M1 as ground and M3 for
signal line shown in Fig. 2(b). The effective dielectric
thickness is only a few micro-meters, and for a 50 ohm
TFML, its line width is almost 12 wm in the band of 1~
300 GHz'"".

2 Circuit design

Figure 3 shows the block diagram of a typical cas-
code amplifier. The common-emitter (CE) HBT produc-
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Fig. 2 Schematic cross-sectional view of (a) multilayer intercon-
nect, and (b) thin-film microstrip lines
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es the controlled output current, this controlled current
flows into the common-base (CB) HBT and is buffered
by the (CB) HBT. The buffer effect reduces the output
resistance of (CE) HBT and reduce the voltage gain of
(CE) HBT, which in turn reduces the Miller effect.
Such structure has the benefits of better gain while main-
taining good linearity and reverse isolation.
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Fig. 3 Block diagram of the typical cascode amplifier
K3 AR O A5 R

Figure 4 shows the circuit topology for the designed
cascode amplifier. In order to obtain wide bandwidth,
two pair parallel open-ended stubs were respectively add-
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Fig. 4 Circuit topology for the wide band cascode amplifier
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ed to the input matching networks of the first stage (CE)
HBT and the output matching networks of the second
stage (CB) HBT. One pair of stubs is designed at the
higher frequency band, and the other pair is designed at
the lower frequency band. Figure 5 shows the amplifier’
s optimum power input and output impedance matching
network schematics. This makes a trade-off between
bandwidth and gain of the amplifier. The folded coupling
lines act as parts of matching network while compensat-
ing some high frequency transmission loss. An imped-
ance matching line with a width of 20 pm and a length of
250 pm was introduced between the two HBT devices.
Since both (CE) HBT and (CB) HBT are supplied by
V., then the stability of the cascode amplifier is sensitive
to the current (the controlled CE output current) passing
through the inter-stage matching line. Figure 6 shows
this chip photograph of the cascode amplifier MMIC. The

sizeis 1. 0 mm X 0. 8 mm.
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Fig. 5 Impedance matching Smith chart and the network sche-
matic
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3 On-wafer measurement

Characterization of the MMIC cascode amplifiers
were obtained by on-wafer measurements. The measured
results are shown in Fig. 7 and Fig. 8. The S-parameter

Fig. 6 Chip photograph of the cascode amplifier MMIC. Size:
1.0 mm % 0. § mm

El6 JRAFIRA AR 1. 0 mm x 0. 8 mm

measurements were performed using a Keysight PNA-X
N5247B network analyzer with Keysight N5293AX01 (1~
110 GHz) frequency extenders, and Rohde & Schwarz
ZVAS50 network analyzer with Rohde & Schwarz ZC170
(110~170 GHz) frequency extenders.
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Fig. 7 Measured and simulated S-parameters of the broadband
amplifier MMIC On-wafer bias: V, =1.5V, V,/V=2.5V
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The measured results show that the maximum gain
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Table 2 State—of—the—art of ultra—broadband amplifier
R2 BEGHASFEEILL

Ref. . fIGHz Technology Gain /dB  Gain Flatness/dB ~ Topology/ Devices Chip-size /mm* Pout/dBm
Distributed
[1] 40~185 500 nm InP DHBT 10 +2 0 0. 8x0. 75 10
X
Cascode
(4] 0~110 100 nm GaAs pHEMT 6 2.5 ) - -
X
Cascode
[5] 123~143 130 nm SiGe BiCMOS 24.3 - 0 0. 7x0. 43 7.7
X
Cascode
(6] 110~170 SiGe BiCMOS 10. 8 +2.5 ) 0.035 -
X
Cascode
[7] 118~236 35 nm GaAs mHEMT 10 - o 1.5%0.5 10
X
500 nm InP Cascode
This work 33~170 10 +2 1. 0x0. 8 1.8
DHBT x2

of the amplifier at 115 GHz is 11.98 dB, and the 3 dB
bandwidth is 33 to 170 GHz (134.98%). Figure 7 also
shows the simulation results of no stub or matched imped-
ance line. Through comparison, it can be found that
these stubs and matching lines can effectively increase
the amplifier bandwidth. Signal fluctuations in the range
of 65~85 GHz and 100~110 GHz are large, which is
caused by overheating of the frequency extender modules
for a long time. The spectrum spurs can be reduced by
turning off the system and cooling, but it cannot be com-
pletely eliminated. The saturated output power of the de-
vice is 1. 8 dBm at 117 GHz, when the input power is -5
dBm. The output power is better than 1 dBm in the range
of 35~134 GHz, and greater than O dBm in the range of
41~170 GHz, as shown in Fig. 7. Accordingly, the out-
put collector current is 5 mA at 2.5V supply and the
peak power added efficiency (PAE) is 8. 8%.

Table 2 shows the performance comparison of sever-
al wide band amplifiers. We noticed that this design pro-
vides the considerable gain, output power and bandwidth
characteristics.

4 Conclusion

In this paper, a wide band amplifier is presented,
which exhibits a good operating bandwidth (better than 1
dBm in the range of 35~134 GHz). The high 134.98%
relative bandwidth completely covers the Q, V, W and D
bands, which makes it a suitable option for measurement
and spectroscopic systems. In the future, the cascode
amplifier shown in this paper can be used as a cell to
achieve greater output power through power combining.
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