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High-efficiency AIN/GaN MIS-HEMTs with SiN, insulator grown in-situ for

millimeter wave applications
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Abstract: In this work, high-efficiency AIN/GaN metal-insulator-semiconductor high electron mobility transis-
tors (MIS-HEMTs) have been fabricated for millimeter wave applications. A 5-nm SiN_ insulator is grown in-situ
as the gate insulator by metal-organic chemical vapor deposition (MOCVD) , contributing to remarkably sup-
pressed gate leakage, interface state density and current collapse. The fabricated MIS-HEMTSs exhibit a maximum
drain current of 2. 2 A/mm at V=2 V, an extrinsic peak G, of 509 mS/mm, and a reverse Schottky gate leakage
current of 4. 7X10° A/mm when V= -30 V. Based on a 0. 15 wm T-shaped gate technology, an f,of 98 GHz and
fyax of 165 GHz were obtained on the SiN/AIN/GaN MIS-HEMTs. Large signal measurement shows that, in a
continuous-wave mode, the MIS-HEMTSs deliver an output power density (P, ) of 2. 3 W/mm associated with a
power-added efficiency (PAE) of 45. 2% at 40 GHz, and a P, (PAE) of 5.2 W/mm (42. 2% ) when V,was fur-
ther increased to 15 V.

Key words: AIN/GaN, metal-insulator-semiconductor High Electron Mobility Transistors (MIS-HEMTs) ,
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In recent years, high electron mobility transistors
(HEMTs) based on GaN have attracted more attention,
due to their high thermal conductivity, high breakdown
voltage, and high-power density for millimeter-wave
(mm-wave) power amplifiers. In an AlGaN/GaN
HEMTs structure, the working voltage may reach 28 V
or even higher''"?" | such high voltage will enhance the
longitudinal electric field to increase the gate leakage
Additionally, the internal electric field intensity will
reach 10°~10"V/em when the 20~30 V is applied to
drain bias, leading to current collapse, reduction of
breakdown voltage, and increase in leakage*'. In order
to achieve high-performance GaN HEMT at low operat-
ing voltage, the energy-band theory is used to design
new epitaxial structures to increase the electron gas den-
sity meanwhile preventing the gate from losing its control
ability for the short T-gate. Therefore, the ultra-thin bar-
rier layer technology has shown great advantages in ultra-
high frequency and high power ' *".

In millimeter-wave applications, the gate length is
shrunk to deep-submicron size, and the transverse di-
mension of the device needs to be scaled down at the
same proportion. To avoid the short channel effect, the
material structure with an ultra-thin barrier layer is used
to solve the aspect ratio of the gate. The issue primarily
results from the much stronger spontaneous and piezo-
electric polarization of AIN/GaN compared to AlGaN/
GaN, leading to a much higher drain current in the
HEMT channel, also allowing the use of a much thinner
barrier layer. While along with the shrink of vertical de-
vice dimensions, increased gate leakage necessitates the
use of a gate insulator' ™",

AIN barrier has been shown highly sensitive to the
air and vapor for oxidation, consequently, surface treat-
ment and passivation techniques play a significant role
in the surface state. To achieve a low gate leakage cur-
rent, materials with a wide bandgap are necessary, such
as Si0O, and ALO,”'"™. However, it is inevitable that
these materials are deposited on the AIN surface when it
is exposed to air, becoming contamination at the interfac-
es. On the other hand, in-situ deposition of SiN_ is a
promising way to realize proper interfaces, which guaran-
tees the insensitivity of AIN surfaces to temperature
change.

In this work, we demonstrated the AIN/ GaN MIS-
HEMTs. By using in-situ SiN_ insulator, a maximum
drain current / of 2.2 A/mm was obtained at V=2

D, max

V, it doubled I, . of the AIGaN/GaN HEMTSs under the
same condition. Transconductance G, ., of 509 mS/mm
are also achieved. Moreover, the OFF-state drain leak-
age, as well as gate leakage current in the HEMTs, was
reduced by the low interface state between AIN barrier
and insulator, contributing to a low Schottky gate leak-
age of 4.7x10° A/mm at V,; = -30 V and a low OFF-
state drain leakage of 8.2x10° A/mm. Owing to the sup-
pressed current collapse, when V,;= 8 V, a high output
power density of 2. 3 W/mm with peak power-added-effi-
ciency (PAE) of 45.2%, and a power gain of 10.2 dB

are achieved at 40 GHz in the continuous-wave (CW)

mode.
1 Experiments

The schematic cross section of MIS-HEMTs is
shown in Fig. 1(a). The AIN/GaN heterostructures in
this study were grown on semi-insulating SiC substrates
by metal-organic chemical vapor deposition (MOCVD)
consisting of a Fe-doped GaN buffer layer, an uninten-
tionally doped GaN channel layer, 1 nm AIN spacer lay-
er, a 5 nm AIN barrier layer, and 5 nm SiN_ insulator
layer. Device fabrication was started with source/drain
ohmic contact formation by Ti/Al/Ni/Au stack, and sub-
sequent rapid thermal annealed at 800 ‘C for 30 s in N,
atmosphere, to yield a contact resistance of 0. 3 ) *mm.
Device isolation was then formed utilizing multiple-ener-
gy nitrogen ion implantation. A T-shaped gate was subse-
quently accomplished by electron beam lithography
(EBL; model manufacturer) of UVIII/AI/PMMA resist
stack. The width of the T-gate foot and head are 0. 15
and 0.6 pm, respectively”. A Ni/Au metal layer was
generated by e-beam evaporation (EVA450) on SiN_’ s
surface for the gate contact. Finally, the AIN/GaN

0.55um| 0.7um 1.15um

PECVD-SiNx

Snm infsitu SiNy

54800 5.0kV 31.4mm x50.0k SE(M)

Fig.1 (a) The schematic of epitaxial structure of AIN/GaN MIS-
HEMTS, (b) the SEM of 0.15-um T-gate
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HEMT devices were passivated with 60 nm stress-free
SiN, grown by plasma-enhanced chemical vapor deposi-

tion (PECVD). The fabricated MIS-HEMTs have a
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source-drain distance (Lg,) of 2.4 wm and a gate-drain
distance (L) of 1.15 wm. An SEM picture of the T-
gate is shown in Fig. 1(b).

As a comparison, AlGaN/GaN HEMT devices are
also developed, with the barrier and cap layers replaced
with a 21-nm Al, ,;Ga, ,sN and a 3-nm GaN layers, re-
spectively, as Ref. [16]. The gate recessed process,
which differs from the AIN/GaN device’ s, uses induc-
tively coupled plasma (ICP) dry etching with chlorine-
based plasmas of BCl, and Cl, to fabricate recessed-gate
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with a width of 0.8 pwm and depth of 6 nm. Then the
same T-shaped gates were fabricated on it. The remain-
ing process steps are the same as for AIN/GaN devices.

2 Results and discussions

2.1 DC measurement

The fabricated devices yielded in this study exhibit
a typical static characterization, as shown in Fig. 2(a).
Due to the much stronger spontaneous and piezoelectric
polarization of AIN/GaN, a maximum drain current of
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Fig. 2 Measured dc characteristics of devices (a) /, of both HEMTs and MIS-HEMTs versus V¢ with V varied from -6 V to 2 V, (b)
gate leakage of HEMTs and MIS-HEMTs with ¥, swept to -30 V, (c) /, and extrinsic transconductance of MIS-HEMTs with V varied
from -6 Vto 2 V at V=6V, (d) /, and extrinsic transconductance of HEMTs with ¥V varied from -6 Vto3 Vat V, =6 V

2 el EAFEDA (a) HEMT Al MIS-HEMT {4 H o U R 00T EE I, (b) HEMT 1 MIS-HEMT #1445 5 R0 3t
XFHEFE, (¢)MIS-HEMT g 5 B AR MR IE , () HEMT #1645 it i 141



486 AP/ NS Qb g A 42 3%

2.2 A/mm at V=2 V was observed. The thickness of
the in-situ SiN_ cap layer is critical for highly scaled GaN
devices to avoid gate leakage current contributing to a re-
verse density of 4. 7x10° A/mm at V., = -30 V, as shown
in Fig. 2(b). The short-channel effect was effectively
suppressed by the thin barrier, as shown by the transfer
curves in Fig. 2(c), and the OFF-state drain leakage is
merely 1.0x10° A/mm. Meanwhile the corresponding
G, .. at V,i=6Vis 509 mS/mm (Fig. 2(c)). Based on
AlGaN barrier device, G, ., is 294 mS/mm and the OFF-
state drain leakage is 8.2x10° A/mm under the same
test condition (Fig. 2(d)).
2.2 The small-signal RF characteristics

The small-signal RF characteristics of the fabricat-
ed MIS-HEMTSs were measured using a network analyzer
in a frequency range from 100 MHz to 40 GHz. Values
of current-gain cutoff frequency f; and unit-power-gain
frequency f,,, as shown in Fig. 4, were determined by
20 dB/dec line extrapolated from the small-signal current
gain |h21land maximum stable gain (MSG). At V=10
V, f, and f, are 98 GHz and 165 GHz, respectively
(Fig. 3). It implies that in-situ SiN, technology effec-
tively suppresses the RF-G, collapse in mm-wave AIN/
GaN HEMTs.

AIN barrier

b °, V=10V

w0} %20y, fr =98 GHz
fuax= 165 GHz

101 Slope: -20dB/dec

1E8 1E9 1E10 1E11

Frequence [ Hz

Fig. 3 Small-signal characteristics of the fabricated AIN/GaN MIS-HEMTs at
V=10V
K3 V=10V F AIN/GaN MIS-HEMTs #§ {4/ M5 5 L A

2.3 CV and pulse measurement

To determine the quality of in-situ SiN_, the capaci-
tance-voltage (C-V) measurement was employed to real-
ize interface trap density. The frequency/temperature
dispersions of the second slope in C-V curve were ana-
lyzed'""™ | and the results are shown in Fig. 4. With
f, varying from 1 KHz to 1 MHz (Fig. 4(a)), and T in-
creasing from 25 C to 150 ‘C (Fig. 4(b) ), the C-V
characteristics of AIN/GaN MIS-HEMT exhibits a slight
(AV less than 0.05 V) dispersions in multi-f/T ac-CV
characteristics, indicating low Dit and high interface
quality in MIS-HEMT. Accordingly, D, at the in-situ
SiN/AIN interface was mapped against E,"*"". From E,-
0.58 eV to E. -0.29 eV, D, falls between 3. 4x10" and
1. 1x10"” em®eV" (Fig. 4(c)).

The low interface state density ensures the low dc-
RF dispersion, the pulse I-V characteristic of the devic-
es is shown in Fig. 5(a). The pulse period and width
were set to 10 ws and 200 ns, respectively. The gate-lag
effect under a quiescent bias of (Vg Vi) = (-6 V, 0

—_ 3 || =———1KHz
e 1.2x10 IKHz r /
——4KHz
€ 10x10° —skz | | L | f
™ ——10KHz ooy
c 5 | | ——20KHz
- BI0X107 [ dfikile [Pt
0 GOKHZ 0.6 07 O.SVGSO.Q 1.0 11 12 f 1
2 6.0x10* {{ ——80KHZ m
= ——100HHZ
- , [| ——200KHz
O 4.0x10° | —— 400HKz
g ——600KHz
2 | | —— 800KHz
8 2.0x10° 1 MHz
0.0 L Il 1
6 -4 -2 0
Vas/V
1.4x10°
~ 42x10°F | —10KHz_150C (b)
~_ 12X —— 10KHz_1401C
£ —— 10KHz_125C
£ 1.0x10° [ ——10KHz_100C
~ ——10KHz_75C T T
L. 2 ——10KHz_50C m
5 8.0x10° | — qoKHz 25
—
8 6.0x10° |
& —— 20KHz_150'C
2 —— 20KHz_140C
'S 4.0x10 ——20KHz_125C
o —— 20KHz_100C
@ 2.0x10° e ——20KHz_75C |-
Q. ——20KHz_50C
8 0.0 —— 20KHz_25°C
L} L] L}
6 -4 2 0
Ves/V
10" 3 (c) QO
X o o o
L ]
— J O o OQ )
< i e ° QD
> L
o o
€ 10" b % g‘
C) E
N
Q )
[ Il 'l Il ] '] Il 'l Il 2 2

0.27 0.30 0.33 0.36 0.39 0.42 0.45 0.48 0.51 0.54 0.57 0.60
E-E |eV

Fig. 4 f/T-dependent C-V characteristics of AIN/GaN MIS-
HEMTs with (a) f, varying from 1 KHz to 1 MHz, (b) T increas-
ing from -25 °C to 150 °C f varying at 10 KHz and 20 KHz (c)
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V) barely changes in the MIS-HEMTs. The drain-lag ra-
tio under a quiescent bias of (V4 V) = (-6 V, 15V)
is pretty weak in the saturation region (collapse ratio:
1.5%, Fig. 5(a)). It is probably due to the N in the
SiN, rather than the AIN barrier that leads N vacancies
creating a conducting channel through the AIN barrier,
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hence low annealing temperature and time. The in-situ
SiN_ impeded the formation of nitrogen deficiency and ox-
idation of bare AIN surface when conventional process of
ohmic annealing at above 800 °C, and suppressed dam-
age to the AIN barrier during the process of extra SiNy
ex-situ passivation. The ultralow dispersion implies that
in-situ SiN, effectively obstructed the bombardment of
ion when the plasm was generated. As shown the pulsed
transfer characteristics curves in Fig. 5(b) , hysteresis
is less than 100 mV after sweeping from -8 V to O V, in-
dicating significant suppression of deep interface traps
with in-situ insulator.
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2.4 Large—signal measurement

Figure 6 depicts the large-signal power performance
of the mm-wave AIN/GaN MIS-HEMTs, evaluated at 40
GHz in CW mode, in comparison with AlGaN/GaN
HEMTs. The devices were biased at Class-AB condition
with low operation voltage, Vs =8 V, V=10V, and
Vs = 15 V, respectively. Load and source impedance
were optimized for the best PAE before the evaluation.

Owing to the enlarged current density and mini-
mized forward gate leakage current of AIN/GaN MIS-
HEMTs, a record high PAE of 45.2% is achieved at
Vs = 8 V, and the corresponding output power density
and associated gain are 2.3 W/mm and 10. 8 dB gain.
By contrast, the PAE, output power density, and gain
of AlGaN/GaN HEMTs are merely 42. 6%, 1.2 W/mm,
and 9. 1 dB respectively. when V,, =10V, P, of AIN/
GaN MIS-HEMTs reached 3.3 W/mm while that of Al-
GaN/GaN HEMTs is 1.5 W/mm; when V=15V, P,
of AIN/GaN MIS-HEMTs increased to 5.2 W/mm while
that of AlGaN/GaN HEMTs is 2. 8 W/mm. In previous
research using the AlGaN HEMTs structure, P,, of 5.1
W/mm can be only obtained under V,, over 25 V. The
high performance of AIN/GaN HEMTs is believed to attri-
bute to the wide conduction band between AIN and
GaN, as well as the high-quality SiN /AIN interface.

At low voltage, the power density of AIN / GaN thin
barrier MIS-HEMTs based on in-situ SiN growth is near-
ly double that of AlGaN barrier devices, making them
promising for low voltage applications.

3 Conclusions

With in-situ SiN_ technique on AIN/GaN epi-struc-
ture and T-gate process, high-performance MIS-HEMTs
have been fabricated for low V,, applications at Ka-
band. A high-quality SiN/AIN interface has been ob-
tained, which was verified by analyzing the frequency
and temperature-dependent of the second slope in the C-
V characteristics. Using 0. 15 pm I’ -shaped gate tech-
nology, the developed MIS-HEMTs show a maximum
drain current of 2. 2 A/mm at V=2 V, an exirinsic peak
G, .. of 509 mS/mm, extra-low dc-RF dispersion. The
drain-lag ratio of 1. 5% under a quiescent bias of (V.
Vise) = (-6 V, 15 V) collapse-ratio in the saturation re-
gion. the MIS-HEMTSs can yield an output power density
of 2.3 W/mm associated with power-added efficiency
(PAE) of 45. 2% at 40 GHz under the drain voltage V=
8 V in continuous-wave mode. Furthermore, when V, =
10 V, the power density was 3.3 W/mm, and PAE
maintain 43. 8% ; when V = 15 V, power density in-
creased to 5.2 W/mm with PAE decreasing to 42.2%.
The results suggest that the in-situ AIN/GaN MIS-
HEMTs are promising for low bias voltage applications
requiring high-efficiency and high-power density at Milli-
meter Waves.
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