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Abstract . Perovskite solar cells (PeSCs) have been considered as one of the most promising photovoltaic technol-
ogies due to their high efficiency, low-cost and facile fabrication process. The power conversion efficiency and
stability of PeSCs highly depend on the quality of perovskite film and the interfaces in the device, which are the
main sources of PeSCs nonradiative recombination losses. Natural biomaterials, with the advantages of earth-
abundance, non-toxicity, and biocompatibility, have shown huge potential to improve both perovskite layer and
interfaces in PeSCs. Herein, the latest progress using natural biomaterials to achieve high-performance PeSCs is
reviewed. It’s discussed the roles of natural biomaterials on perovskite film in terms of morphology optimization
defect passivation and energetics modification. Meanwhile, the strategies using natural biomaterials to create a su-
perior interface between the perovskite and charge transport layer, and to build stretchable, biocompatible, and
biodegradable electrodes are present. Finally, an outlook on the further development of PeSCs with respect to nat-

ural biomaterials is provided.
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Introduction nities due to their outstanding optoelectronic merits of
high light absorption coefficient'? , long electron-hole
Metal halide perovskites (MHPs) have attracted tre- diffusion length'™*', tunable bandgap'™*', and small exci-
mendous attention of both academia and industry commu- ton binding energy”. Attributed to the excellent proper-
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ties, the power conversion efficiency (PCE) of
perovskite solar cells (PeSCs) has boosted to a certified
value of 25.5% within a decade of efforts™. Combined
with the advances in manufacturing such as low-cost raw
materials ', low-temperature and facile fabrication pro-
cess' '™ | as well as scalable and flexible compatibili-
ty"*"*", PeSCs have become the vanguard of the new re-
newable and clean solar energy technologies.

In general , perovskite solar cells are composed of
the sandwich structures, where the photogenerated car-
riers in the active layer must travel across the
perovskite film, enter the charge transport layer, and
finally are collected at the corresponding electrodes.
The performances of the PeSCs are the results of the
whole system, which requires each layer to collaborate
well and all the interfaces to work fluently. However,
due to the soft and ionic nature of the perovskite and
rapid crystal growth process, numerous defects are in-
evitable to form at the surface and grain boundaries of
perovskite film"'*""". These defects can act as recombi-
nation centers, impeding carrier transport and thus
confining the PCE of PeSCs' ™', The defects are sen-
sitive to external stress including moisture , heat, light
and bias, destroying the long-term stability of
PeSCs 22!, Moreover, the interfaces in the device are
other sources for nonradiative recombination due to un-
matched interface energy level alignment, which set

the ceiling of photovoltage and further limit the PCE of
PeSCs 277,

Many strategies have been explored to break the lim-
its by improving the perovskite film quality with fewer de-
fects and modifying the interface energetics, such as ad-
ditive engineering®?’ , post-treatment™ and interface
design "', Various functional materials including met-
al cations, polymers, ionic liquids and fullerene deriva-
tives have been developed to assist the implement of
these strategies [3s-401, Recently, natural biomaterials,
which are abundant in raw materials, low-cost on fabrica-
tion, flexible and biocompatible even biodegradable for
application, have been emerging in the field of green op-
toelectronics devices'™, especially for renewable ener-
gy technologies . Biomaterials play versatile roles as
additive to improve perovskite film, as interlayer to im-
prove interface contact, as novel charge transport layer to
facilitate carrier transport, even as electrode to improve
flexibility (Fig. 1).

In this review, we retrospect recent progress of natu-
ral biomaterials used in PeSCs. In the first section, we
introduce the roles of biomaterials on perovskite film in-
cluding morphology optimization, defect passivation and
energetics modification. The following section discusses
the biomaterial-assisted perovskite interface. Finally, we
give an outlook on the further development of PeSCs with
respect to natural biomaterials.
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1 Biomaterials—assisted perovskite film

1.1 Morphology optimization

Morphology, which refers to the uniformity, cover-
age, roughness, crystallinity and grain size of the film,
is an important index to assess the quality of perovskite
film. The perovskite film with poor morphology can great-
ly decrease the device performance by causing serious
current leakage and substantial charge recombination
losses”®. The morphology of perovskite film can be
well optimized by natural biomaterials in the way of addi-
tive engineering. Biomaterial additives can effectively
modulate the perovskite crystallization kinetics, thereby
prompting the formation of homogeneous and uniform
perovskite film with larger grain size and fewer defect
sites.

An interesting study of feeding “coffee” for
perovskite film was performed by Wang and cowork-
ers™, They introduced 1, 3, 7-trimethylxanthine, also
named as caffeine, into the perovskite film to tune the
morphology of perovskite film. It was found that the two
conjugated carboxyl groups of caffeine as molecule locks
could strongly interact with the unbonded Pb* ions, re-
tarding perovskite crystal growth and forcing a preferred
crystalline orientation (Fig. 2 (a-b) ). The morphology-
improved perovskite presented reduced defect density
and superior vertical charge transport efficiency, thus
achieving a champion PCE of 20. 25% in PeSCs, which
was much higher than the control device with a PCE of
17.50% (Fig. 2 (¢) ). Moreover, the non-volatile and
thermal-stable caffeine significantly suppressed ion mi-
gration and increased the decomposition activation ener-
gy of perovskite. As a result, the caffeine containing

PeSCs yielded excellent thermal stability (Fig. 2(d) ),

which remained over 85% of its initial efficiency after
1300 h heating at an elevated temperature of 85 ‘C. How-
ever, the control device declined below 60% of its origi-
nal PCE after only 175 h during the same condition.
Long-chain biopolymers with multiple functional
groups can provide more interactions and stronger con-
straining force to modulate the morphological quality.
Yang et al. added wood-based polymer, ethyl cellulose
(EC) , into the antisolvent to fabricate high quality
perovskite film “”. It was clearly displayed that EC bio-
polymer slowed down the crystallization process of
perovskite film in Fig. 3(a), attributed to the Lewis ac-
id-base interaction. The slower crystallization provided
longer time for grains to grow and led to denser and
smoother perovskite film with larger grain size (Fig. 3
(b)). In addition, the long-chain EC provided a scaffold
to eliminate the lattice strain of the annealing process and
stabilized perovskite crystal structure (Fig. 3(c)). As a
result, EC-modified devices achieved a high PCE of
19.41% compared to 17.11% for the control device.
More importantly, EC-modified device showed enhanced
environmental stability, which maintained 80% of its ini-
tial PCE after storage in ambient air at 45% relative hu-
midity for 30 days, while the control device degraded
completely for the same time. Lin and coworkers also em-
ployed M13 bacteriophage as perovskite nucleation and
crystal growth template”™’. The carboxylic and amino
groups on the surface of M13 bacteriophage gave numer-
ous bonding sites to the uncoordinated Pb* in the
perovskite, realizing a homogeneous perovskite film with
enlarged grain size and favorable orientation (Fig. 3 (d-
e) ). Consequently, the M13 bacteriophage templated
perovskite solar cell delivered a PCE improvement from
17.8% to 20.1% with excellent reproducibility
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(a) Morphology images of perovskite films with and without caffeine, (b) normalized azimuth angle plots along (110) crystal

plane from the 2D grazing incidence wide-angle X-ray diffraction patterns of perovskite films with and without caffeine, (c) J-V curves
of PeSCs with and without caffeine, (d) normalized PCE decays upon 85 °C continuous annealing in nitrogen box **'
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(Fig. 3(f)).
1.2 Defect passivation

Defects are usually formed when the growth of the
crystal lattice is interrupted or misaligned, which are ba-
sically unavoidable in practical situation due to the soft
and ionic nature of perovskite''®*. Diverse defects in-
cluding vacancies, interstitials and anti-site substitutions
exist at the surface and grain boundary of perovskite
film, which can act as electronic trap states in the band
gap of the perovskite and hence capture photogenerated
carriers during PeSCs operation''”*. The defects also ac-
celerate ion migrations, and reduce the splitting of quasi-
Fermi levels, ultimately decreasing the device PCE'®*.
Furthermore, defects are detrimental to the stability of
perovskite films and solar cells" . Therefore, it is of
great importance to minimize the defect density at the
perovskite surface and grain boundary for the enhance-
ment of both efficiency and stability of PeSCs.

Natural biomaterials show impressive capability to
passivate defects in the perovskite. Xiong et al. em-
ployed forest-based biomaterial, betulin, as defect passi-
vator for the first time and reached an PCE over 21% for
p-i-n structured PeSCs (Fig. 4(a-b))"". In combination
with experimental and theoretical analyses, they re-
vealed that the hydroxyl group of betulin could effectively
coordinate with the nonbonded Pb* ions by sharing a
lone pair of electrons, which reduced the recombination
sites and boosted charge transport. Moreover, the forma-
tion of hydrogen bonding between betulin and perovskite
suppressed methylamine and halogen ions migration and
stabilized the perovskite crystal structure, leading to
largely enhanced operational stability. Qiu et al. also
demonstrated biopolymer ploy-L-lysine (PLL) as effec-
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Fig. 3

tive defect passivator®. The large number of carboxylic
and amino groups on the long chain of the biopolymer
had a robust capability to chelate under-coordinated Pb*
and suppress metallic Pb’, resulting in a remarkable sup-
pression of nonradiative recombination. As calculated by
the density functional theory (DFT) in Fig. 4(c-h), the
Pb-I antisite induced trap states were effectively annihi-
lated with the adsorption of PLL, which neutralized the
localized electron distribution by coordination effect.
The substantial reduction of defects significantly im-
proved the performance of blade-coated PeSCs, where
the PLL passivated device showed a high efficiency of
19. 45% and a high open-circuit voltage (V,) of 1. 11 V,
whereas the control device only had a PCE of 16.52%
witha V, of 1.01 V.

Moreover, Hu et al. explored the relationship of
passivation effect and molecule interaction strength by us-
ing a series of natural amino acid (NAA) molecules in-
cluding glycine, glutamic acid, proline and arginine as
precursor additive (Fig. 5(a))'™". It was found that argi-
nine with guanidine end group had the strongest coordina-
tion capability with the uncoordinated Pb* and thus
showed the best passivation effect (Fig. 5(b-c)). Conse-
quently, the arginine-passivated PeSCs exhibited a PCE
of 20.49% with a V,, increase over 100 meV. Recently,
Wang and coworkers further demonstrated the impacts of
molecule configuration on passivation effect by a set of
biomaterials including theophylline, caffeine, and theo-
bromine, which were accessible from the natural materi-
als tea, coffee, and chocolate, respectively®’. These
nonvolatile biomolecules had the same functional groups
of carbonyl group (C=0) and N - H, but the different
chemical configurations. The detrimental effects of Pb-I
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(a) The crystallization process of perovskite films with and without EC under 100 °C annealing, (b) top-view SEM images of

perovskite films with different EC concentrations, (c) the schematic diagram of the long-chain EC scaffold against expansion/shrinkage
stress, ' (d) chemical structure of M13 bacteriophage with multiple functional groups, (e) working mechanism of M13 bacteriophage-
templated perovskite crystal growth, (f) PCE statistical analysis of PeSCs with M 13 bacteriophage under different heat treatment'*

K3 (a)7E 100 °CiB K FRAFT , & EC FIA & ECH5ERA MR 10 45 fhad 2 , (b) & ANIR] EC Y& B2 5 Bk Wi 1y SEMARFRLIAT , (o) K
EC SBT3 1 7 JE ", (d) 2B AR M3 B AR (R A2 28, (e) i 1 ML 3 I T AR AR 19 5 R fot R A K 1 TAEBILY
(£) %% M13 W B 1A 14 PeSCs 15 AN Rl FAAL B T 19 PCE Se 4347



3 1] XIONG Shao-Bing et al: Recent progress on natural biomaterials boosting high-performance perovskite solar cells 501
25
@ v &
E 2} 2
+ o
() MA*Vacancy p :z;: %é
® r E sl E.
. 2 2 125
0 I g 180 %;
¢ [I'Vacancy L 10 185
® O T wio w Betulin
L ——w/oRS
¢ H 5 5F ——wioFs
------ ) —s—Ww Befulin RS
Hydrogen bonding ——w Betulin FS
de i Yo 07 o7 o8 o8 10 12
oardination Voltage (V)
= =8
Y B B BV
=9 -=g) =¢ =d
P;I N b 1 N
IFEXE I
= == @ *féd
(d)
200 3
baﬁaga%,
200 /\,//\ 10 o NHJ
s . JS L s
_ 3 _ GNHY | _ 3
s W T s 3 :
S 20 . 8 20 : 8 20 :
8 e :M 2 f’V\._gbsggp/\"/W g | e RN
g, 3 g o ‘ 0 :
100 : 100 ! DwU i
Ip o P
0 o e R 0 4 4 (] 4
Energy (eV) Energy (eV) Energy (eV)
(f) (@) (h)
Fig. 4 (a) The schematic illumination of the interactions between forested-based biomaterial betulin and perovskite, (b) J-V curves of

PeSCs with and without betulin under forward and reverse scan, '’ charge density distribution of MAPbL, (001) surface (c) with no de-
fect, (d) with Pb-I antisite defect and (e) with Pb-I antisite defect after PLL passivating, density of states of MAPbI, (001) surface (f)

with no defect, (g) with Pb-I antisite defect and (h) with Pb-I antisite
& 4

defect after PLL passivating'®’

(@) ARMRIE A= Wy RT3 85 k™ A LA TR B 1AL, (b) TEIE 1) FIS [ 4948 T, B MEAR ZR FIAS S HE AR R PeSCs 14 -V 1

2 A (o) BEAT BB | (d) A7 Po-1EL (7 R L K () PLL B Ak Po-1 S £ BRI 25 F T (9 MAPDL, (001) i T HEL A 45 JEE 341, 7 () B A ik
W4 ()5 Pb-1 A2 K LA K (h) PLL i Ak Pb-1 K237 Bl 25 14 B9 MAPDL, (001 ) 5y 1 75 25 JiE

antisite were expected to be eliminated by the coordina-
tion interaction with C=0 group, and the coordination
strength was related to the hydrogen bonding between N-
H and I of Pbl,” octahedron. The theophylline possessed
the optimum configuration, where the hydrogen bonds en-
hanced the coordination interactions and led to the stron-
gest interaction energy of -1. 7 eV (Fig. 5(d)). For caf-
feine molecule, a methyl group replaced the H atom of N-
H group, which broke the formation of hydrogen bonds
with I ions, leading to a weaker interaction energy of -
1.3 eV. Although the theobromine possessed both C=0
and N-H groups, the distance between the two groups
was too short, where the coordination impeded the forma-
tion of hydrogen bonds. The unfavorable configuration
yielded an interaction energy as weak as -1.1 eV and
might generate more defects due to the lattice distortion.

As a result, theophylline-passivated perovskite solar
cells delivered the high efficiency of 23. 48%, compared
to 21.02% of the control device, 22.32% of caffeine-
passivated device and 20. 24% of theobromine-treated de-
vice (Fig. 5(e) ), further confirming the crucial role of
molecule configuration on passivation effectiveness and
device performance. Meanwhile, the strong interactions
between the theophylline and perovskite suppressed ions
migration and thus enhanced operational stability. As
shown in Fig. 5(f), theobromine-treated device main-
tained over 90% of its initial PCE under continuous light
exposure for 500 h, while the control device declined
over 80% during the same time.
1.3 Energetics modification

Electronic structures are the basic properties of a
semiconductor, such as valence band (VB) , conduction
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(a) Chemical structure of natural amino acids (NAAs) molecules including glycine (Gly) , glutamic acid (Glu) , proline

(Pro), and arginine (Arg), (b) steady-state and (c) time-resolved photoluminescence (PL) spectra of the pristine and various NAAs-
passivated perovskite films, "’ (d) interaction structures of perovskite and theophylline, caffeine, and theobromine with corresponding
theoretical interaction energy, (e) J-V curves of PeSCs with or without biomaterials’ treatment under reverse scan direction, (f) normal-

ized PCE decays of encapsulated PeSCs with or without theophylline treatment under continuous light (90 = 10 mWcm™) exposure

[48]

K5 (a) RIREILIR (NAAS) 7> T LA 2500, 65 H 2R (Gly) A 2R (Glu) i 28 (Pro) FIDRS 22 (Arg) , AR FIASFl NAAs §ii
PR A ERA™ WL Y (b) &S (o) I 71 J3 B EICR e 1", (d) A5 Bk 55 26 Wi PR 1T T ] k1% A A P 5 4 B AR 1oz ) BRI A
HAEHRE, () TER AR T, & WA RIS & ALY R PeSCs 19 1-V #i 2R, (D 7EEZHEIR(90 + 10 mWem™) T, £ 45 HliAb BRI

ARG EEOF AL PR () 255 J5 PeSCs 14 —4k PCE 2275 i 281+

band (CB) , Fermi level (E,) and vacuum level .
Perovskite with suitable electronic structures is essential
to form favorable energy level alignment with adjacent
charge transport layers and to improve charge transport in
PeSCs ", A lot of work has demonstrated that the elec-
tronic structures of perovskite can be effectively tuned by
self-doping effect, which prefer to be more n-type (or p-
type) with rich Pbl, (or MAI) in the film composi-
tion' ™). Tt was reported that the surface electronic struc-
tures of perovskites film heavily depended on the underly-
ing work function (WF) of substrates (electrodes) .
Perovskite surface generally shows the higher WF when
deposited on the higher WF substrate. The researchers
also used molecule doping via natural biomaterials to ad-
just the energy level positions of perovskite and improve
the performance of PeSCs.

Priya et al. introduced biomaterial deoxyribonucleic
acid (DNA) into the perovskite precursor and obtained
more p-type perovskite film with superior hole transport
capability ™. The Fermi level of the perovskite film is
shifted from -4. 91 to -5. 01 eV after DNA incorporation.
The highest occupied molecular orbital (HOMO) level of
DNA matched with the VB of the perovskite, significant-
ly prompting hole transport in the perovskite film. As
confirmed by the steady-state photoluminescence (PL)
spectra, a remarkable quenching was observed when the
DNA-incorporated perovskite contacted with HTL.
Therefore, the efficiency of DNA-based PeSCs

(20. 63%) was significantly improved compared to the
control device (18.43%). Later, bioactive neurotrans-
mitter dopamine was also introduced into the perovskite
precursor to fabricate perovskite active layer with favor-
able energetics, reported by Zhang and coworkers”™.
They found a downshift of E, toward VB for dopamine-in-
corporated perovskite film, accompanied by a valence
band maximum (VBM) of -5.22 eV, which matched
with the hole transport layer (-5.20 eV) compared with
the pristine perovskite film with a VBM of -5. 33 eV. The
intimate contact facilitated hole transfer from the
perovskite into HTL with a reduction of charge recombi-
nation, and largely increased the device performance.
Recently, Capsaicin, the compound that makes
chili pepper spicy, was reported having a significant im-
pact on the perovskite energetics by Xiong and cowork-
ers. " They added a small amount of capsaicin into the
perovskite precursor and systematically investigated the
electronic structure of perovskite film. As shown in Fig.
6(a), the ultraviolet photoemission spectra (UPS) dem-
onstrated a remarkable reduction of WF from 4.95 to
4.48 eV with the addition of 0. 1 wt% capsaicin, while
the energy difference between Fermi level and VBM in-
creased by the same value, keeping a constant ionization
potential. Such energy level shift indicated a clear ener-
getics transformation from p-type to n-type for the
perovskite top surface (Fig. 6 (b) ). Moreover, Kelvin
probe force microscopy (KPFM) directly showed the for-
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Fig. 6 (a) UPS spectra of secondary electron cutoff region and valence band region of PTAA : FATCNQ, pristine perovskite and capsa-
icin-containing perovskite deposited on PTAA: FATCNQ, (b) energy levels of perovskite with and without the capsaicin derived from
UPS spectra, (c) cross-sectional AFM topographies, corresponding KPFM images, and potential profiles under zero-voltage bias of
perovskite-capsaicin/PTAA : FATCNQ/ITO, (d) J-V curves of PeSCs with or without the capsaicin under reverse and forward scan direc-
tions, (e) recent works on polycrystalline based and single-crystal MAPbI -based p-i-n PeSCs, (f) evolution of the PCEs measured from
unencapsulated PeSCs in ambient air with 45% relative humidity (RH) at room temperature (RT),"”” (g) UPS spectra of secondary elec-
tron cutoff region (left panel) , LEIPS spectra of valence band region (middle panel) , and LEIPS spectra of conduction band region
(right panel) of the perovskite films with and without the carnitine, (h) the schematic illustration of the energy levels of PeSCs with and
without carnitine'™
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mation of p-n junction below about 100 nm of the
perovskite film surface (Fig. 6(c) ). The resulting sur-
face energetics formed a more efficient interface with the
upper electron transport layer (n-type) , boosting charge
transfer in the device. Combined with the defect passiv-
ation effect of capsaicin, both defect-induced and inter-
face nonradiative recombination were significantly sup-
pressed. As a result, they achieved a record efficiency of
21.88% for MAPbI,-based p-i-n perovskite solar cells
with the high fill factor (FF) of 83.81% (Fig. 6(d-e) ).
Capsaicin also improved the device stability attributed to
the enhanced water resistance ability of the perovskite
film (Fig. 6 (f) ). In their another work, natural dyes
applied to electronic  structure of

were tune the

perovskite””". They introduced 5-chloroisatin (Isatin-Cl)
as additive in the precursor and observed an n-type dop-
ing behavior for the perovskite film. The upshift of Fermi
level produced more n-type perovskite, slowing down the
rate of trap-mediated recombination and thus prolonging
the carrier lifetime. Therefore, they obtained an en-
hanced efficiency of 20. 18% with a negligible hysteresis
and excellent stability.

Chen et al. also used natural vitamin B (carnitine)
as an energetics modifier to fabricate high-performance
PeSCs'™. After the incorporation of vitamin B, it was ob-
served that the WF increased by 150 meV, and the VBM
shifted toward E; by 100 meV, while the conduction
band minimum (CBM) shifted away from the Fermi level
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by 310 meV (Fig. 6(g)). Consequently, carnitine-in-
corporated perovskite film possessed a VBM of -5.42 eV
and a CBM of -3. 87 eV, closer with the HOMO (-5. 40
eV) of hole transport layer and LUMO (-3.90 eV) of
electron transport layer, respectively (Fig. 6(h)). The
matched interfacial energy-level alignment caused high
charge transfer efficiency at the interface, thereby sup-
pressing interface charge recombination. Moreover, vita-
min B could also annihilate both positive- and negative-
charged ionic defects in the perovskite film. The com-
bined effects led to grand enhancement of V, and FF, re-

sulting in a PCE increased from 16. 43% to 20. 129%™,
2 Biomaterials—assisted interface

Interface, which governs carrier extraction and col-
lection in the devices, is of great importance to the effi-
ciency and stability of PeSCs. An ideal interface gener-
ates no energy loss when carriers pass through the inter-
face. Furthermore, interface should be robust enough
with a strong barrier for ion migration, and oxygen and
moisture permeation™*'. With this purpose in mind, the
researchers put extensive efforts to improve interface con-
tact, optimize interface energetics, and minimize interfa-
cial trap states™™. In this section, we focus on recent

TiO,

CH;NH,Pbl,

work of using biomaterials for interface engineering in
PeSCs, in terms of electron transport layer, hole trans-
port layer and stretchable electrode.
2.1 Electron transport layer

TiO, is common ETL in conventional n-i-p PeSCs
due to its suitable electronic structures and brilliant
chemical, electronical and optical properties™™*". How-
ever, tremendous oxygen vacancies on TiO, surface and
the ultraviolet photocatalysis effect can trigger the decom-
position of perovskite, leading to poor efficiency and sta-
bility of PeSCs™". You et al. utilized biopolymer heparin
sodium (HS) as an interlayer anchored on TiO, surface
(Fig. 7 (a) ). They found that the HS biopolymer
played multifunctional roles. First, HS biopolymer im-
proved the morphology of TiO, film with no pinholes and
better hydrophilicity, and also provided a favorable envi-
ronment for perovskite film to growth, producing
perovskite film with enlarged grain size and enhanced
crystallinity (Fig. 7(b-c)). Moreover, the HS effective-
ly passivated surface defects of TiO, film, and uncoordi-
nated Pb** and I ions on the bottom surface of perovskite
film. In addition, the strong anchoring effect of HS bio-
polymer could impede ions migration at TiO,/MAPDbI, in-
terface, suppressing the hysteresis behavior (Fig. 7 (d-
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e) ). Therefore, they achieved an efficiency up to
20. 1% for MAPDI, based solar cells with enhanced sta-
bility (Fig. 7(f) ). Peng et al. demonstrated that deoxy-
ribonucleic acid (DNA) could also reduce the trap states
in TiO, by coordination bonding and electrostatic interac-
tions (Fig. 7(g))"". Moreover, DNA enhanced the sur-
face potential on TiO,, improving carrier transport at the
interface of the PeSCs (Fig. 7(h)).

Recently, Das et al. proposed a new type of bio-
PeSCs'™', where natural biomaterials, bacteriorhodopsin
(bR), are bridging perovskite and mesoporous TiO, ETL
to enhance light energy conversion efficiency (Fig. 8 (a-
d)). The bR molecule incurred a Foister resonance ener-
gy transfer (FRET) process, and the photoexcited elec-
trons could inject into the bR molecule layer and then
quickly transfer to the TiO, cathode, serving as a carrier
bridge between TiO, and perovskite layers. The bR mole-
cule bridge significantly facilitated electron extraction in
the PeSCs and restricted the interface charge recombina-
tion, leading to an enhancement of device performance.

Besides biopolymers, small biomaterials also exhib-
it excellent interfacial behaviors in PeSCs. Zhang et al.
applied neurotransmitter (dopamine) to modify TiO,,
creating a cross-link between TiO, and perovskite (Fig. 9
(a) ) ™. Meanwhile, dopamine-modified TiO, had the
closer CB to that of perovskite layer and the deeper VB
due to the strong electron-donating ability of dopamine
(Fig. 9(b) ), which effectively enhanced photogenerated
electrons in perovskite layer transfer into the TiO, ETL.
On the other hand, the amino groups of dopamine could
repair the uncoordinated Pb* and suppress Ph-I/Br anti-
site on perovskite surface, further reducing carrier re-
combination loss. Consequently, the energy level
aligned interface with fewer trap states by dopamine re-
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Fig. 8

markably boosted the efficiency to 20. 93% compared to
18. 15% of the control device. Moreover, the device with
dopamine-capped TiO, as ETL retained 80% of the initial
efficiency under continuous full-sun illumination in nitro-
gen atmosphere for 1200 h, showing excellent stability
(Fig. 9(c)). In contrast, the control device displayed a
severe degradation with the same test condition. Recent-
ly, Wang et al. reported that Chlorophyll was applied to
modify TiO, ETL”*. They introduced carboxy-chloro-
phyll derivative (C-Chl) into the mesoporous TiO, film
and yielded a record PCE of 3. 11% for lead-free Cs,Ag-
BiBr, double PeSCs. It was demonstrated that C-Chl en-
hanced electron transfer at ETL/perovskite interface and
suppressed interface charge recombination. Bone-based
biomaterial hydroxyapatite nanoparticles (HAP NPs)
were also mixed with TiO, NPs to build a robust scaffold
for perovskite deposition””. HAP NPs could absorb Ph
ions due to the strong bonding between Pb** and PO,” ,
hence effectively blocking the lead leakage into the envi-
ronment (Fig. 9(d-e) ), which was crucial for the future
commercialization of PeSCs.

The ETL SnO, possesses high carrier mobility and
can be deposited at low temperature "', However, the
poor film crystallinity of SnO, creates numerous trap
states, which triggers interface recombination and de-
creases the device performance™. Dopamine was pro-
posed to modify the interfacial contact between Sn0O, and
perovskite film by Hou and coworkers. " They prepared
a self-assembled monolayer (SAM) of dopamine (DA )
between SnO, and perovskite. Similar to the case of
TiO,, dopamine anchored on SnO, surface and passivated
the defects on SnO, surface. Dopamine also improved the
surface affinity of the SnO, film, providing a good tem-
plate for perovskite growth and thus creating the high-
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quality perovskite film with enlarged grain size and
smoother surface. Dopamine could further reduce the
WEF of SnO, with the formation of an interfacial dipole,
enhancing electron extraction at the interface. Kim et al.
introduced a biomolecule SAM of creatine on the Sn0O,
surface to improve ETL/perovskite interface (Fig. 10
(a) )", The creatine SAM layer also formed an inter-
face dipole and reduced the WF of SnO, layer, resulting
in an enhancement of carrier extraction (Fig. 10(b-c) ).
As aresult, PeSCs with creatine interlayer yielded a high
efficiency of 20. 8%.

Fullerene and its derivatives are the main organic
materials used for ELT in inverted p-i-n PeSCs"*". How-
ever, the large energy difference between the LUMO of
PCBM and WF of metal electrodes impairs the electron
collection efficiency at the cathode and limits the overall
efficiency of PeSCs. Xiong et al. used natural biomateri-
als Isatin and its derivative Isatin-Cl (Fig. 10(d)) to op-
timize cathode interface™'. The WF of Al electrode large-
ly decreased when Isatin was inserted between PCBM
and Al, attributed to the formation of a negative dipole at
the interface (Fig. 10 (e) ). It significantly facilitated
electron transfer and largely suppressed interface charge
recombination at cathode back contact, leading to en-
hanced PeSCs efficiency (Fig. 10(f)).

2.2 Hole transport layer

Hole transport layer (HTL) takes the responsibility
of hole transport and extraction during PeSCs operation.
The HTLs generally include PEDOT: PSS, Spiro-
OMeTAD, polytriarylamine (PTAA) and inorganic
NiO,"™. Among them, Spiro-OMeTAD is considered to
be the landmark during the development of PeSCs,
which established all-solid PeSCs with a PCE over
10%"'"". However, Spiro-OMeTAD needs additional

doping of bis (trifluoromethane) sulfonimidelithium salt
(LiTFSI) and hydrophilic 4-tert-butylpyridine (tBP) to
enhance solubility and hole mobility, which not only
complicates the fabrication process but also brings poor
stability due to the hygroscopic and diffusive nature of
these dopants''®. Therefore, there is urgent demand to
develop cost-effective and dopant-free HTLs for highly ef-
ficient and stable PeSCs.

Li et al. demonstrated that natural photosynthetic
catalyst Chlorophyll was feasible for hole transport in
PeSCs"™. They utilized zinc Chlorophyll aggregates,
Chl-1 and Chl-2, as HTL without dopants, and then fab-
ricated CH,NH,PbI, Cl. based PeSCs with a PCE of
11.44% (Fig. 11(a)). They found that zinc Chlorophyll
aggregates could form type 1 alignment with perovskite
layer, where the LUMO and HOMO levels of Chl-1 and
Chl-2 aggregates were above that of perovskite, respec-
tively (Fig. 11(b)), which was favorable for hole trans-
fer (Fig. 11(c) ). Later, Yusoff et al. employed DNA
based biomaterial, DNA - hexadecyl trimethyl ammoni-
um chloride (CTMA) , as new type HTL in inverted
PeSCs''™'. They achieved a high PCE of 15. 86% for the
biomaterial-based inverted PeSCs compared to 12. 49%
for PEDOT : PSS based devices. Moreover, DNA-CTMA
film was low-temperature and solution processable, and
exhibited high thermal stability, good wettability and ex-
cellent transparence over a wide range from 300 to 1100
nm, making it a good candidate HTL for high-perfor-
mance PeSCs.

NiO, is commonly used as HTL in inverted PeSCs
with the advance of low cost and good stability, however,
its high VBM level and poor conductivity largely restrict
the device performance™ . Recently, Xie et al. report-
ed that natural biomaterial adenine was an excellent sur-
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face modifier for NiO_ HTL*". The adenine modification hole extraction efficiency of NiO_ HTL. Moreover, the
reduced the WF of NiO, by 0. 05 eV and increased the perovskite film deposited on the adenine modified NiO,
VBM of NiO, from 0. 71 to 0. 86 eV, leading to a deeper film showed larger grain size and better crystallinity, at-
VB level of 5. 4 eV than the pristine NiO_ film (5.3 eV) tributed to the improved wettability of NiO, surface.
(Fig. 11(d-e)). The resulting energetics enhanced the Therefore, a significant increase of PCE from 16. 76% to
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18.96% with suppressed hysteresis behavior was ob-
tained (Fig. 11(f)).

PEDOT: PSS is also widely used in the inverted
PeSCs due to its facile and soluble fabrication process.
However, its low WF limits the device photovoltage, and
the acidic nature of PEDOT: PSS is also detrimental to
the long-term stability of PeSCs"'*™. To overcome the
drawbacks of PEDOT: PSS, Li and workers introduced
dopamine (DA) into PEDOT: PSS aqueous solutions''”".
The WF of PEDOT: PSS was surprisingly increased from
5.11t05.33 €V after doping dopamine, and the PH value
raised from 1.5 to 5. 2. The improved WF matched well
with the VB of perovskite (5.4 eV), facilitating charge
transfer and eliminating the photovoltage limit (Fig. 12
(a) ). Consequently, the dopamine-modified solar cell
achieved a much higher V,, of 1.08 V and PCE of
16. 6%, while the control devices only had a V,, of 0. 96
V and PCE of 15.2%. The mild PH value of dopamine-
modified PEDOT: PSS delivered less acid corrosion and
impeded the degradation of perovskite, endowing the op-
timized device longer lifetime. Recently, they further in-
vestigated the working mechanism of dopamine doping
PEDOT: PSS """, Electron spin resonance (ESR) mea-
surement revealed that more radical content formed in do-
pamine doped PEDOT: PSS, which provided stronger
electron donating capability (Fig. 12(b-c)). The amino
and hydroxyl groups of dopamine were found to interact
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with the undercoordinated Pb** on perovskite bottom sur-
face and improved the quality of the perovskite films,
minimizing trap sites and suppressing trap-assisted re-
combination. Eventually, a champion efficiency up to
18. 5% was realized for dopamine-modified PEDOT : PSS
based PeSCs with enhanced stability (Fig. 12(d-e) ).
2.3 Stretchable electrode

Stretchable electrodes play a key role in flexible
PeSCs and the further application of PeSCs in wearable
electronic devices. The commonly used flexible elec-
trodes are based on silver nanowire networks or copper
conductors, which are usually coated on plastic sub-
strates such as polyethylene terephthalate (PET) and
polyethylene naphthalate (PEN) """ Although these
electrodes exhibit good stretchable capability and me-
chanical stability, the plastic substrates are hard to de-
grade in the environment and will cause white pollutions.
Therefore, biomaterial-based flexible electrodes attract
more attention due to their environmental harmless, bio-
degradable and biocompatible ability.

Cellulose paper, as a mature technique, is low-
cost, light-weight, flexible, biocompatible and totally
biodegradable, making it being an attractive substrate for
flexible devices, which has been used in flexible sensors
and organic solar cells. In 2018, Gao et al. employed
carbon-modified cellulose paper as anode electrode and

fabricated HTL-free flexible PeSCs for the first time
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Fig. 13 (a) Device structure of paper based HTM-free PeSCs
and (b) corresponding energy level diagram, (c) photovoltaic
performance of paper based HTM-free PeSCs under forward and
reverse scan directions, (d) J-V curves of paper based device
with different bending cycles, (e) optical image of paper based
HTM-free PeSCs attached on the wrist and (f) bent with radius
(R) of 6 mm'"™!
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(Fig. 13 (a) ) "™ The carbon-modified paper showed
not only good conductivity but also proper energy level
alignment with perovskite layer with the resulting effi-
cient charge extraction (Fig. 13(b)). Based on the bio-
substrate, they achieved a PCE of 9.05% for the HTL-
free flexible PeSCs, with excellent flexibility and robust
mechanical durability (Fig. 13 (c-f) ). However, the
poor transmittance of carbon modified cellulose paper
limits its application. Later, Zou and coworkers reported
a transparent and stretchable electrode derived from bam-
boo and then fabricated flexible PeSCs with a PCE up to
11. 68%"*". Bamboo has tremendous highly-polymerized
cellulose fibers, producing cellulose nanofibril substrates
(B-CNF) (Fig. 14(a)). The B-CNF substrate showed
superior transmittance over the full visible light range
due to the presence of numerous carboxylate groups in B-
CNT. Combined with the transparent conductive indium
zine oxide (1Z0), the B-CNT/IZO electrode successfully
integrated the merits of good transmittance, high conduc-
tivity and ultra-flexibility as well as extremely light
weight. Moreover, the compact and smooth B-CNT/IZO

electrode presented excellent mechanical stability,
which could remain a stable and reliable square resis-
tance after 3000 times bending with a 4 mm curvature ra-
dius, while the square resistance of PET/IZO electrode
largely increased after 2400 times same bending (Fig. 14
(b-¢) ). Furthermore, the B-CNT/IZO bioelectrode
based PeSCs also delivered remarkable bendable fatigue
resistance during the bending process (Fig. 14 (d) ).
Han et al. recently demonstrated the practical feasibility
of virus-templated gold nanowire electrodes for flexible
PeSCs (Fig. 15(a))""™*. They used wild-type M13 bacte-
riophages as substrate for gold nanowire, which could
bind to gold ions via ion exchange. The bioelectrode
showed considerable conductivity and transparency,
leading to a PCE of 9. 28% with negligible hysteresis and
brilliant stretchable ability (Fig. 15(b-d)).

3 Summary and outlook

In this review, we have summarized recent progress
of natural biomaterials boosting highly efficient and sta-
ble PeSCs. Natural biomaterials play significant roles in
active layer and interface of PeSCs. For the active layer,
various natural biomaterials have been successfully intro-
duced into the perovskite precursor to improve morpholo-
gy, reduce trap density, and modify electronic structure
of perovskite films, increasing device efficiency. The
mechanism behind the improved perovskite film quality
includes multiple factors such as retarded crystallization
process, defect passivation via various functional groups
and doping behavior. Natural materials also benefit for
the long-term stability of PeSCs, attributed to the elimi-
nation of vulnerable defects and the enhancement of
perovskite crystal structure. In terms of interface, natu-
ral biomaterials are effectively applied as buffer layer and
charge transport layer to improve interface contact and
hence minimize interface charge recombination loss in
PeSCs. The mechanism behind the enhanced interface
properties is mainly ascribed to the favorable energy level
alignment induced by natural biomaterials, boosting
charge transfer at the interface. Furthermore, natural
biomaterials-based electrodes show excellent flexibility,
strong stretchable ability, brilliant biocompatibility and
biodegradability, which are suable for the fabrication of
flexible and wearable PeSCs.

In fact, the performance of biomaterials-based
PeSCs still lags behind the chemicals-based counter-
parts. To further improve the efficiency and stability of
biomaterials-based PeSCs, in-depth understand of inter-
actions between biomaterials and perovskite should be
carefully investigated. The mechanism behind biomateri-
als-assisted perovskite formation and interface optimiza-
tion is still unclear. Further exploration of novel biomate-
rials is highly required for the customized demands of
PeSCs. Meanwhile, we also hope the application of natu-
ral biomaterials in lead-free PeSCs. The integration of
green and biodegradable biomaterials with the nontoxic
perovskite would fabricate the full green PeSCs with high
efficiency and long-term stability.
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