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Real-time infrared target detection based on center points
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Abstract: A real-time target detection method based on center points is proposed for infrared imaging systems
equipped with CPUs. Following the lightweight design principles, a backbone with low computational cost is first
introduced for feature extraction. Correspondingly, an efficient feature fusion module is designed to exploit spa-
tial and contextual information extracted from multi-stages. In addition, an auxiliary background suppression
module is proposed to predict foreground regions to enhance the feature representation. Finally, a simple detec-
tion head predicts the target center point and its associated properties. Evaluations on the infrared aerial target da-
taset show that our proposed method achieves 90. 24% mAP at a speed of 21. 69 ms per frame on the CPU. It sur-
passes the state-of-the-art Tiny-YOLOV3 by 10. 16% mAP with only 21% FLOPs and 11% parameters while also
runs 10. 02 ms faster. The results demonstrate its great potential for real-time infrared applications.
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Introduction based detection models have been proposed and have sig-
nificantly boosted detection accuracy. Despite the state-
Target detection is one of the most critical yet chal- of-the-art accuracy these models have achieved, their de-
lenging tasks in infrared (IR) imaging systems, as it in- ployment costs are increasingly expensive. Only high-
volves a combination of target classification and localiza- end graphics processing units (GPUs) can ensure their
tion'"". With the tremendous development of deep learn- inference efficiency due to the high computational com-
ing, many modern convolutional neural network (CNN) plexity and large parameter size (model size). However,
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most real IR systems are usually deployed on resource-
constrained devices only equipped with central process-
ing units (CPUs). Consequently, research on designing
accurate real-time detection models suitable for IR sys-
tems is valuable and urgent.

From the perspective of detection methods, current
CNN-based detection models can be roughly divided into
anchor-based detectors and anchor-free detectors. An-
chor-based detectors start with setting a huge number of
pre-defined rectangle bounding boxes (anchors) with dif-
ferent ratios and scales on high-level feature maps ex-
tracted from images. Taking these anchors as proposal
candidates, two-stage detectors such as Faster R-CNN™
and its variants” * introduce two modules to detect tar-
gets precisely. The first module is a regional proposal
network (RPN) , which predicts the probabilities that
each anchor belongs to a target or not and regresses the
coordinate offsets between each anchor and its labeled
boundary. After non-maximum suppression (NMS) ,
RPN sends all selected anchors to the second module
called R-CNN. R-CNN estimates the category probabili-
ties and refines the boundaries. Compared with two-stage
detectors, one-stage anchor-based detectors get rid of
RPN and directly predict all anchor categories and re-
gress their boundaries. As the architectures are much
simpler, one-stage detectors usually have faster detection
speed but lower accuracy due to the extreme class imbal-
ance during training. YOLO series™ is one of the most
successful one-stage detectors. Its real-time version Tiny-
YOLO has been widely implemented in many applica-
tions that require fast detection.

By avoiding the intricate design and heavy computa-
tion of anchors, anchor-free detectors based on key
points have drawn much attention recently""*". Corner-
Net''" proposes to detect a target bounding box as a pair
of key points, the top-left corner and the bottom-right cor-
ner. It adopts the associative embedding technique to
group the corner pairs belonging to the same target. Com-
pared with CornerNet, CenterNet'” introduces a much
simpler architecture that simultaneously predicts the tar-
get center and its size. Since it does not rely on compli-
cated post-processing decoding strategies, CenterNet
achieves state-of-the-art accuracy while having a fairly
fast inference speed.

To alleviate the resource consumption of CNNs, a
lot of efficient architectures have been designed, includ-

[14] [15-16]

ing SqueezeNet ™ , MobileNet series , and Shuf-
fleNet series'™™, etc. Depth-wise separable convolution
and group convolution are two primary forms of convolu-
tion that construct these architectures. In addition to effi-
cient architecture design, methods such as network prun-
ing ™, and quantization” ' can further accelerate the
inference speed based on pre-trained networks.

To achieve a better balance between detection accu-
racy and speed for CPU-only IR systems, we propose a
real-time infrared target detection model inspired by both
the neatly anchor-free detector CenterNet and the light-
weight units introduced by ShuffleNetV2'"™'. In this pa-
per, it is named TCPD, a tiny center point detector.
TCPD contains four main modules: Feature Extraction
Module (FEM) , Feature Fusion Module (FFM) , Back-
ground Suppression Module (BSM) , and Target Predic-
tion Module (TPM). FEM extracts feature maps at differ-
ent levels, and FFM combines all these feature maps to
leverage spatial and semantic information. BSM is re-
sponsible for enhancing the target region, and TPM pre-
dicts the target size and its center point. Due to its low
computational cost and anchor-free design, TCPD can be
efficiently trained on a single GPU and be easily adapted
to different application scenarios (from infrared to visi-
ble). Without bells and whistles, evaluations on the self-
built infrared dataset have shown that TCPD has a better
accuracy-speed tradeoff. Compared with state-of-the-art
lightweight detector Tiny-YOLOv3, TCPD obtains gains
of 10. 16% mAP with only 21% FLOPs and 11% parame-
ters at an inference speed of 21.69 ms per image on

CPU, which is 10. 02 ms faster.
1 Proposed method

In this section, we present the details of TCPD, in-
cluding the network design and workflow. Although our
model is designed mainly focusing on detection efficien-
cy, its accuracy still reaches a high level. Figure 1 illus-
trates the overall architecture of TCPD. In TCPD, FEM
is lightweight designed to reduce the computation cost,
which is usually very heavy in modern detection models.
FFM and BSM are introduced to mitigate the accuracy
degradation due to lightweight design. Furthermore,
TPM is for final detection.

1.1 Feature extraction module

Feature extraction module, commonly called the

backbone network, is the heaviest part of a detection
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Fig. 1 The overall architecture of TCPD
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model in terms of computation. Therefore, designing a
lightweight backbone with strong representation power is
fundamental to accurate fast detection. Starting from
ShuffleNetV2, we build a new lightweight FEM. It only
requires 365 million FLOPs when the input resolution is
384%384 pixels. The detailed structure of FEM is listed
in Table 1.

Table 1 Network structure of FEM
&1 FEMMELEH

Stage Output Size ~ Output Channels Layer
Input 384x384 3 Image
Stagel 192x192 24 3x3, Conv, s2
Stage2 96X96 24 3X3, Max Pooling, s2

Block1x1
Stage3 48x48 116

Block2x4

Block1x1
Stage4 24x24 232

Block2x8

Block1x1
Stage5 12x12 464

Block2x4

As listed, FEM consists of five stages in total. After
the process of each stage, the feature resolution is halved
while the feature channel increases. In “Stagel” and
“Stage2”, FEM first quickly down-samples the input res-
olution to 1/4 and expands the feature channel to 24
through a simple 3X3 convolution and a 3X3 max pool-
ing. From “Stage3” to “Stage5” , each stage is stacked
by several repeated blocks shown in Fig. 2. “Block1” is
used to down-sample the feature map and expands the
feature channel (116, 232, 464 for Stage 3, 4, and 5,
respectively) at the beginning of each stage. Controlling
the number of feature channels expanded can trade off
network efficiency and accuracy. “Block2” is repeated to
enhance the feature representation ability. To minimize
memory access costs, the amount of its input and output
feature channels keeps the same.

1.2 Feature fusion module
Image features extracted by FEM at different stages

Block1 Block2

o o)

Fig. 2 The structure of blocks in FEM
K2 FEM [ 5oesfih

represent different levels of information. Low-level fea-
tures in early-stage feature describe more spatial details.
By contrast, high-level features in late-stage feature
maps capture more contextual information. As a result,
localization is more sensitive to larger early-stage feature
maps, while classification relies more on smaller late-
stage feature maps. To better leverage both spatial and
contextual information for detection, a simple feature fu-
sion module is designed. Figure 3 shows its network
structure.

FFM Output: Block3

Stage2 96x96x24
goees | WEMEREEE
48x48x24

3x3 Conv
BN+ReLU

1x1 Conv
BN+ReLU

k.
Stage3
48x48x116

3x3 DW Conv
BN

1x1 Conv
BN+ReLU

Channel
Shuffle

12x12x232
Block3

StageS
12x12x464

Fig. 3 The network structure of FFM
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Starting from “Stage5”, FFM combines four stages
of FEM through a “bottom-to-up” structure. As the di-
mension of feature maps (size and channel) varies be-
tween two adjacent stages, two steps are needed to com-
plete a single feature fusion. The first step is channel
compression. It is through “Block3” for the first two
times, while through a 3X3 convolution for the last time.
As shown in Fig. 3, “Block3” is similar to “Block2” in
FEM. 1t first divides the input feature maps into two
groups equally. Then, one group of feature maps passes
through a depth-wise convolution and two element-wise
convolutions. Instead of concatenating, these two groups
are added together before channel shuffling, which even-
tually halves the channel. After channel compression,
the second step is to upsample feature maps by bilinear
interpolation. Compared with deconvolution, bilinear in-
terpolation achieves better performance in practice while
reducing extra parameters that need to be learned and
stored. The final output size of FFM is 1/4 of the input
image, which is large enough for accurate localization of
small infrared targets and avoiding collisions of target
center points.
1.3 Background suppression module

Generally speaking, a high-performance network is
expected to focus on features in the foreground region
rather than the background counterparts. To achieve this
goal, we design a computation-friendly Background Sup-
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pression Module (BSM) to guide the network to learn
proper feature distribution explicitly. Figure 4 shows the
structure of BSM.

BSM

3x3 DW Conv
BN+ReLU

1x1 Conv
BN+ReLU

1x1 Conv
BN+Sigmoid

Region
Prediction

Fig. 4 The network structure of BSM
K4 BSM 252k Hs

BSM has two functions: predicting foreground re-
gions and re-weighting feature maps over spatial dimen-
sions. Foreground prediction is the basis of feature re-
weighting. During training, BSM first passes the input
from FEM to a single-layer detection head through two
convolutional layers. The detection head then predicts
foreground regions within one heatmap. Ground-truth
foreground regions are defined as the combination of all
ground-truth targets mapped to the heatmap. The region
of each ground-truth target is produced by a 2D-Gaussian
kernel, formulated as:

2 2
(x-x) (-»)

K(x,y) = exp| - = - = , (1)
)

x

where (x_,y,) is the center point of the mapped ground-

o o . )
truth box, o, = ? and o, = —, which are determined

6
by width and height of the ground-truth target and the hy-
per-parameter a. o is set to 0. 95 by default. All points
inside the kernel are regarded as positive samples. If two
kernels overlap, the element-wise maximum is taken.
Focal loss ™' is applied to train the network :

o |-7) (V) iy, =1

Lr = WZ 2 R 5 (2)

o (Yx},) log(l - Yx},) otherwise
where N is the total number of ground-truth targets, Y
specifies the ground-truth foreground regions, Y” de-
notes the estimated probability for the foreground re-
gions.

As the trained BSM has the ability to predict fore-
ground regions, the intermediate layer before the detec-
tion head can guide the feature distribution. For compu-
tational efficiency, only an element-wise convolution fol-
lowed by the sigmoid function is used to re-weight the in-
put feature maps over the spatial dimensions.

1.4 Target prediction module

Target prediction module is the last module of
TCPD. It is responsible for predicting all information
that is needed to localize and classify targets. To match
the light-weight design of other modules, a unified struc-

ture including only one 3X3 convolutional layer is used in

TPM, as shown in Fig. 5.

TPM
3x3 Conv Center
Heatmap
3x3 Conv Target
Size
3x3 ConV | Coordinate
Offset

Fig. 5 The network structure of TPM
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TPM treats target detection as its center localization
and size regression. For center localization, it predicts
center confidence scores of different target categories on
corresponding center heatmaps. The ground-truth heat-
maps are produced by the same Gaussian kernel defined
in Eq. 1, enabling negative samples around positive cen-
ter points to get less penalization than those far away.
Compared to the kernel used in CenterNet, our variant
kernel is more reasonable. It fits the target shape better
with two standard deviations determined by target width
and height, respectively. The hyper-parameter « is set to
0. 75 by default. The center heatmaps are trained with a
variant focal loss"":

o (1-7,) 1og(¥,) iy, =1
N e (1 - Y”,{,)At(ﬁ)ay log(l - fm) otherwise
. (3)

where N is the total number of ground-truth center
points, Ym. is the center confidence score of class ¢ at lo-
cation (x,y), Y, is its corresponding ground-truth val-
ue. Additional to center heatmaps, TPM also predicts co-
ordinate offsets to compensate for the discretization error
caused by downsampling. Center locations are adjusted
slightly by offsets when remapping from the heatmap to
the original image. L1 loss is adopted for training defined

as:
=~ N0 -2 -5
L=13]0.- (%)

>
where N is also the total number of ground-truth center

. (4)

points, O; is the predicted offset, p is the center coordi-
nate on the original image, R is the downsampling factor
(default is 4) , p is the center coordinate of discretization

% on the heatmap.

For size regression, TPM directly predicts the target
size on the center point with width and height. The target
size is also trained with L1 loss:

1
gk_sk’ ) (5)

LS:NZ

k=1

where §, is the predicted k-th target size, and s, is the
ground-truth k-th target size.
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Combined with the loss L, in BSM, the total loss L
for training is:

L=L +L +X\L +X\,L, , (6)

where N and \, are weights for loss L, and L, respective-
ly. They are set to 0.1 in our experiments unless other-
wise specified.

Different from training, a simple post-processing
method is introduced to generate the final predictions dur-
ing inference. Instead of using loU-based NMS, a 3x3
max-pooling layer is used on the center heatmaps to se-
lect the top 100 center points with the highest confidence
scores. After adjusting by coordinate offsets, all selected
center points and their corresponding target sizes are re-
mapped to the original image. The final results are those
with confidence scores above a manual threshold.

2 Experiments

In this section, we first evaluate the performance of
TCPD on both the self-built infrared aerial target dataset
and the public visible dataset PASCAL VOC. An abla-
tion study is then conducted to evaluate our design fur-
thermore.

2.1 Dataset and implementation details

In our experiments, an infrared aerial target dataset
is built for training and testing. There are 2 758 images
with 3 000 labeled infrared targets in the dataset. All im-
ages are captured from ground-to-air infrared videos. The
labeled targets consist of five categories: bird, helicop-
ter, airliner, trainer, and fighter. The ratio of the train-
ing set and test set is 7:3. Results on the public dataset
PASCAL VOC are also reported to verify the generaliza-
tion ability of TCPD. PASCAL VOC dataset has natural
images from 20 categories. The VOC 2007 and 2012 tra-
inval sets are combined for training, while the VOC 2007
test set is used for testing.

We implement TCPD with Pytorch. It is trained on
a single GPU 1080ti and tested on CPU 9900ks. During
training, the input resolution is set to 384X384. Stan-
dard data augmentation is applied, including random
flipping, random scaling, cropping, and color jittering.
Adam is adopted to optimize the total loss. By default,
TCPD is trained with a batch size of 32 for 150 epochs.
The learning rate starts from 1. 25e-3 and decays by a fac-
tor of 0. 1 at the 70th epoch, and 120th epoch.

2.2 Target detection
Accuracy is one of the most critical metrics for a de-

Table 2 Detection results on infrared dataset

R2 ANMIEERNER

tection model. A good light-weight model requires accu-
rate classification and localization while keeping efficien-
cy. We first evaluate our model on the infrared dataset.
The results are shown in Table 2. The first two rows are
classic GPU-based detection models™ ", while the last
three rows are CPU-based ones” *'”. The backbone net-
work of CenterNetand YOLOv3 is Res18 and Dark-
net53. Tiny-YOLOv3 and Tiny-YOLOv4 use the light
version of Darknet53 and CSPDarknet53 as their back-
bones.

As shown in Table 2, TCPD achieves 90.24%
mAP, which surpasses all other light-weight models. For
example, it outperforms Tiny-YOLOv3 and FKPD by
10. 16% and 1. 26%. Tiny-YOLOv4 can only achieve Ti-
ny-YOLOv3 level accuracy with a larger input size,
which sacrifices its computational efficiency greatly. It is
noteworthy that TCPD even surpasses CenterNet by
2.2% , which benefits from the design of FFM and SAM.
As small targets dominate the infrared dataset, TCPD
with these modules has significant advantages. Figure 6
visualizes some examples on the infrared dataset. It is
clear that the detection accuracy, including classification
and localization, achieves a high level.

Fig. 6 Examples on infrared dataset
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In addition to evaluating TCPD on the infrared datas-
et, the model is also trained on the VOC dataset to verify
its generalization ability. The network and all training hy-
perparameters keep the same as those used on the infra-
red dataset. The results are reported in Table 3.

As the VOC dataset contains more types of targets
and more complex scenarios, it is reasonable that large
GPU-based models with more powerful representation

Model Input Size mAP/(%) AP /(%)
Bird Fighter Airliner Helicopter Trainer
CenterNet 384x384 88.04 76.73 88.95 94.91 90. 77 88. 84
YOLOv3 416x416 93.02 87.70 93.97 95.97 94. 84 92. 66
Tiny-=YOLOv3 416x416 80. 08 66.58 83.16 93.85 84.92 71.90
Tiny-=YOLOv4 512%x512 82.87 85. 60 91. 06 95.35 89.13 53.23
FKPD 384x384 88.98 79.40 90. 84 95.01 90. 27 89.39
TCPD 384x384 90. 24 79.44 90. 69 96. 02 94. 68 90. 35
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Table 3 Detection results on VOC dataset
3 VOCHIEERNER

Model Input Size mAP/(%)

CenterNet 384x384 68. 24
YOLOv3 416%x416 76. 80
Tiny=YOLOv3 416x416 58.40
Tiny—YOLOv4 416%x416 65.71
FKPD 384x384 61.61

TCPD 384x384 66. 76

abilities perform better than TCPD. However, TCPD still
achieves 66.76% mAP, which is close to CenterNet
while two times faster. Compared with Tiny-YOLOv3 and
FKPD, TCPD surpasses them by 8. 26% and 5. 05%, re-
spectively. As for the latest Tiny-YOLOv4, TCPD still
outperforms it by 1. 05%. The results demonstrate that
TCPD can adapt target detection better in different appli-
cations. Some examples are shown in Fig. 7.

Fig. 7 Examples on the VOC dataset
El7  VOC KL

2.3 Inference speed

As discussed, inference speed plays a significant
role in determining whether the model can be applied in
most IR systems without GPU acceleration. Computation-
al cost (FLOPs) and model size (Parameters) are two
key metrics to evaluate a light-weight model. The compu-
tational cost has a direct influence on the inference
speed. Lower FLOPs always mean faster detection.
While the model size directly affects the storage cost. A
model with fewer parameters makes it easier to deploy
and has lower FLPOs. Table 4 shows the efficiency test
on the infrared dataset. In addition to calculates FLOPs
and the number of parameters, we also test the inference
speed running on the CPU in practice. For fairness, we
input one infrared image once a time on a single thread.
The resolution of all input images is fixed to 384%384.
The final inference time is the average of 100 images cal-
culated.

With only 0. 49 billion FLOPs and 0. 95 million pa-
rameters, TCPD achieves real-time single frame detec-
tion on the CPU at a speed of 21. 69 ms. It is 10. 02 ms
and 4. 17 ms faster than Tiny-YOLOv3 and FKPD, with
merely 21% and 34% FLOPs. The speed of Tiny-YO-
LOv4 is on par with FKPD, which is 4. 54 ms slower

than TCPD. Compared with the other two GPU-based
models, the speed advantage of TCPD is more signifi-
cant. Combined with the discussion in subsection 2. 2,
TCPD achieves a better performance, which keeps the
balance of accuracy and speed. As a result, it is more
suitable for the application in CPU-only IR systems,
which requires accurate target detection at a real-time
speed.

Table 4 Real-time analysis of TCPD
%4 TCPD RS #T

Inference Time/

Model FLOPs/Bn Parameters/M
ms

CenterNet 8. 69 14.22 48.90
YOLOv3 27.93 61.63 134.07
Tiny=YOLOv3 2.34 8.68 31.71
Tiny-YOLOv4 2.91 5.88 26.23
FKPD 1.55 2.03 25. 86
TCPD 0.49 0.95 21. 69

2.4 Ablation study

In this subsection, we first evaluate the network de-
sign of TCPD. Experiments include varying input resolu-
tion, compressing the feature channel, and module abla-
tion. The results are shown in Table 5. We choose the
default configuration used in 2. 2 as the baseline. All ex-
periments are conducted on the infrared dataset.

Input resolution is an important factor that has a no-
table influence on the performance of TCPD. Smaller im-
ages mean low-resolution feature maps, which leads to
the loss of detailed features. Larger images can improve
detection accuracy while slows down the inference
speed. Line 2 and line 3 in Table 5 verify this conclu-
sion. TCPD-compressed (line 4) is proposed for more
sensitive applications to the computational cost and de-
tection speed. It decreases the channels of FEM starting
from “Stage3” with {48, 96, 192}, and the inference
speed is up to 17.90 ms with only 0. 19 billion FLOPs
and 0. 19 million parameters. The last two lines explore
the effectiveness of FEM and BSM. From the experi-
ments, both have positive effects on the detection accura-
cy while having limited overheads on the inference
speed. The mAP decreases 0.95% and 1.49% when
eliminating FFM and BSM, respectively.

Table 5 Ablation study on the design of model
x5 HEENGITRIHRISSI

Inference Time/

Model Input Size mAP/(%)
ms
TCPD(baseline) 384x384 90. 24 21.69
TCPD-small 320x320 89. 85 18.22
TCPD-large 512x512 92.38 32.70
TCPD-com-
384x384 88. 60 17.90
pressed
TCPD w/o FFM 384x384 89.29 20. 15
TCPD w/o BSM 384x384 88.75 20. 43
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In addition to the network design, we also investi-
gate the influence of the Gaussian kernel defined in Eq.
1. As the kernel is only used to define the penalty
weights of negative samples around center points in heat
maps during training, it does not affect the inference
speed. Table 6 shows the detection results on both datas-
ets with different standard deviations controlled by a.

Ranging from 0. 35 to 0. 95, the variation of a actu-
ally affects the scale of negative samples with penaliza-
tion other than 0 inside the ground-truth box. An appro-
priate a can improve the detection accuracy. For the in-
frared dataset with more small targets, the choice is more
flexible. While for the VOC dataset with larger targets,
the impact is significant. As a result, the choice should
be more careful.

Table 6 Ablation study of Gaussian kernel

*6 BEZHHRITE
Dataset (mAP/(%))
* Infrared vocC
0.35 89.42 64. 81
0.55 90. 56 66. 00
0.75 90. 24 66. 76
0.95 90. 31 66. 24

3 Conclusion

We proposed a new real-time infrared target detec-
tion model TCPD based on center points. With the bene-
fit of lightweight design, its computational cost is low,
and it can keep the fast inference speed on CPU-only de-
vices. In addition to fundamental feature extraction and
target prediction, the Feature Fusion Module and Back-
ground Suppression Module are designed to improve fea-
ture representation. Evaluations on both infrared and
VOC dataset demonstrate the outstanding performance of
TCPD as it achieves a better balance between accuracy
and speed. In summary, it provides a new choice for re-
al-time detection in IR systems. In the future, we plan to
investigate methods such as network pruning to speed up
the model while keeping detection accuracy and finally
deploy it as a key module in real infrared tracking sys-
tems.
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