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Abstract：A real-time target detection method based on center points is proposed for infrared imaging systems
equipped with CPUs. Following the lightweight design principles，a backbone with low computational cost is first
introduced for feature extraction. Correspondingly，an efficient feature fusion module is designed to exploit spa⁃
tial and contextual information extracted from multi-stages. In addition，an auxiliary background suppression
module is proposed to predict foreground regions to enhance the feature representation. Finally，a simple detec⁃
tion head predicts the target center point and its associated properties. Evaluations on the infrared aerial target da⁃
taset show that our proposed method achieves 90. 24% mAP at a speed of 21. 69 ms per frame on the CPU. It sur⁃
passes the state-of-the-art Tiny-YOLOv3 by 10. 16% mAP with only 21% FLOPs and 11% parameters while also
runs 10. 02 ms faster. The results demonstrate its great potential for real-time infrared applications.
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基于中心点的实时红外目标检测方法

苗 壮 1，2， 张 湧 1*， 李伟华 1，2
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2. 中国科学院大学 电子电气与通信工程学院，北京 100049）
摘要：针对仅配备CPU的红外成像系统，本文提出了一种基于中心点的实时目标检测方法。遵循轻量化的设

计原则，首先引入了低计算成本的特征提取网络，并在此基础上设计了相应的特征融合模块以充分利用不同

阶段提取的空间和上下文信息。同时为了进一步提高网络的表征能力，提出了一个背景抑制模块以完成对

前景区域的特征增强，并最终通过轻量检测网络实现对目标中心点及其相应属性的预测。在红外空中目标

数据集上的实验表明，本文所提方法能够在CPU上以 21.69 ms每帧的速度达到 90.24%的检测精度。与经典

的 Tiny-YOLOv3相比，在计算量和参数量仅为前者 21%和 11%的前提下，检测精度提高了 10.94%，并且检测

速度提高了10.02 ms，证明了方法在实时红外系统中的巨大应用潜力。
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Introduction
Target detection is one of the most critical yet chal⁃

lenging tasks in infrared（IR）imaging systems，as it in⁃
volves a combination of target classification and localiza⁃
tion［1-3］. With the tremendous development of deep learn⁃
ing，many modern convolutional neural network（CNN）

based detection models have been proposed and have sig⁃nificantly boosted detection accuracy. Despite the state-of-the-art accuracy these models have achieved，their de⁃ployment costs are increasingly expensive. Only high-end graphics processing units（GPUs）can ensure theirinference efficiency due to the high computational com⁃plexity and large parameter size（model size）. However，
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most real IR systems are usually deployed on resource-constrained devices only equipped with central process⁃ing units（CPUs）. Consequently，research on designingaccurate real-time detection models suitable for IR sys⁃tems is valuable and urgent.From the perspective of detection methods，currentCNN-based detection models can be roughly divided intoanchor-based detectors and anchor-free detectors. An⁃chor-based detectors start with setting a huge number ofpre-defined rectangle bounding boxes（anchors）with dif⁃ferent ratios and scales on high-level feature maps ex⁃tracted from images. Taking these anchors as proposalcandidates，two-stage detectors such as Faster R-CNN［4］

and its variants［5，6］ introduce two modules to detect tar⁃gets precisely. The first module is a regional proposalnetwork（RPN），which predicts the probabilities thateach anchor belongs to a target or not and regresses thecoordinate offsets between each anchor and its labeledboundary. After non-maximum suppression （NMS），RPN sends all selected anchors to the second modulecalled R-CNN. R-CNN estimates the category probabili⁃ties and refines the boundaries. Compared with two-stagedetectors，one-stage anchor-based detectors get rid ofRPN and directly predict all anchor categories and re⁃gress their boundaries. As the architectures are muchsimpler，one-stage detectors usually have faster detectionspeed but lower accuracy due to the extreme class imbal⁃ance during training. YOLO series［7-10］ is one of the mostsuccessful one-stage detectors. Its real-time version Tiny-YOLO has been widely implemented in many applica⁃tions that require fast detection.By avoiding the intricate design and heavy computa⁃tion of anchors， anchor-free detectors based on keypoints have drawn much attention recently［11-13］. Corner⁃Net［11］ proposes to detect a target bounding box as a pairof key points，the top-left corner and the bottom-right cor⁃ner. It adopts the associative embedding technique togroup the corner pairs belonging to the same target. Com⁃pared with CornerNet，CenterNet［13］ introduces a muchsimpler architecture that simultaneously predicts the tar⁃get center and its size. Since it does not rely on compli⁃cated post-processing decoding strategies， CenterNetachieves state-of-the-art accuracy while having a fairlyfast inference speed.To alleviate the resource consumption of CNNs，alot of efficient architectures have been designed，includ⁃

ing SqueezeNet［14］，MobileNet series［15-16］，and Shuf⁃fleNet series［17-18］，etc. Depth-wise separable convolutionand group convolution are two primary forms of convolu⁃tion that construct these architectures. In addition to effi⁃cient architecture design，methods such as network prun⁃ing［19-20］，and quantization［21-22］ can further accelerate theinference speed based on pre-trained networks.To achieve a better balance between detection accu⁃racy and speed for CPU-only IR systems，we propose areal-time infrared target detection model inspired by boththe neatly anchor-free detector CenterNet and the light⁃weight units introduced by ShuffleNetV2［18］. In this pa⁃per，it is named TCPD，a tiny center point detector.TCPD contains four main modules：Feature ExtractionModule（FEM），Feature Fusion Module（FFM），Back⁃ground Suppression Module（BSM），and Target Predic⁃tion Module（TPM）. FEM extracts feature maps at differ⁃ent levels，and FFM combines all these feature maps toleverage spatial and semantic information. BSM is re⁃sponsible for enhancing the target region，and TPM pre⁃dicts the target size and its center point. Due to its lowcomputational cost and anchor-free design，TCPD can beefficiently trained on a single GPU and be easily adaptedto different application scenarios（from infrared to visi⁃ble）. Without bells and whistles，evaluations on the self-built infrared dataset have shown that TCPD has a betteraccuracy-speed tradeoff. Compared with state-of-the-artlightweight detector Tiny-YOLOv3，TCPD obtains gainsof 10. 16% mAP with only 21% FLOPs and 11% parame⁃ters at an inference speed of 21. 69 ms per image onCPU，which is 10. 02 ms faster.
1 Proposed method

In this section，we present the details of TCPD，in⁃cluding the network design and workflow. Although ourmodel is designed mainly focusing on detection efficien⁃cy，its accuracy still reaches a high level. Figure 1 illus⁃trates the overall architecture of TCPD. In TCPD，FEMis lightweight designed to reduce the computation cost，which is usually very heavy in modern detection models.FFM and BSM are introduced to mitigate the accuracydegradation due to lightweight design. Furthermore，TPM is for final detection.
1. 1 Feature extraction moduleFeature extraction module，commonly called thebackbone network，is the heaviest part of a detection

Fig. 1 The overall architecture of TCPD
图1 TCPD整体框架
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model in terms of computation. Therefore，designing alightweight backbone with strong representation power isfundamental to accurate fast detection. Starting fromShuffleNetV2，we build a new lightweight FEM. It onlyrequires 365 million FLOPs when the input resolution is384×384 pixels. The detailed structure of FEM is listedin Table 1.

As listed，FEM consists of five stages in total. Afterthe process of each stage，the feature resolution is halvedwhile the feature channel increases. In“Stage1”and
“Stage2”，FEM first quickly down-samples the input res⁃olution to 1/4 and expands the feature channel to 24through a simple 3×3 convolution and a 3×3 max pool⁃ing. From“Stage3”to“Stage5”，each stage is stackedby several repeated blocks shown in Fig. 2.“Block1”isused to down-sample the feature map and expands thefeature channel（116，232，464 for Stage 3，4，and 5，respectively）at the beginning of each stage. Controllingthe number of feature channels expanded can trade offnetwork efficiency and accuracy.“Block2”is repeated toenhance the feature representation ability. To minimizememory access costs，the amount of its input and outputfeature channels keeps the same.
1. 2 Feature fusion moduleImage features extracted by FEM at different stages

represent different levels of information. Low-level fea⁃tures in early-stage feature describe more spatial details.By contrast， high-level features in late-stage featuremaps capture more contextual information. As a result，localization is more sensitive to larger early-stage featuremaps，while classification relies more on smaller late-stage feature maps. To better leverage both spatial andcontextual information for detection，a simple feature fu⁃sion module is designed. Figure 3 shows its networkstructure.

Starting from“Stage5”，FFM combines four stagesof FEM through a“bottom-to-up”structure. As the di⁃mension of feature maps（size and channel）varies be⁃tween two adjacent stages，two steps are needed to com⁃plete a single feature fusion. The first step is channelcompression. It is through“Block3”for the first twotimes，while through a 3×3 convolution for the last time.As shown in Fig. 3，“Block3”is similar to“Block2”inFEM. It first divides the input feature maps into twogroups equally. Then，one group of feature maps passesthrough a depth-wise convolution and two element-wiseconvolutions. Instead of concatenating，these two groupsare added together before channel shuffling，which even⁃tually halves the channel. After channel compression，the second step is to upsample feature maps by bilinearinterpolation. Compared with deconvolution，bilinear in⁃terpolation achieves better performance in practice whilereducing extra parameters that need to be learned andstored. The final output size of FFM is 1/4 of the inputimage，which is large enough for accurate localization ofsmall infrared targets and avoiding collisions of targetcenter points.
1. 3 Background suppression moduleGenerally speaking，a high-performance network isexpected to focus on features in the foreground regionrather than the background counterparts. To achieve thisgoal，we design a computation-friendly Background Sup⁃

Table 1 Network structure of FEM
表1 FEM网络结构
Stage
Input
Stage1
Stage2
Stage3

Stage4

Stage5

Output Size
384×384
192×192
96×96
48×48

24×24

12×12

Output Channels
3
24
24
116

232

464

Layer
Image

3×3，Conv，s2
3×3，Max Pooling，s2

Block1×1
Block2×4
Block1×1
Block2×8
Block1×1
Block2×4

Fig. 2 The structure of blocks in FEM
图2 FEM的单元结构

Fig. 3 The network structure of FFM
图3 FFM的网络结构
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pression Module（BSM） to guide the network to learnproper feature distribution explicitly. Figure 4 shows thestructure of BSM.

BSM has two functions：predicting foreground re⁃gions and re-weighting feature maps over spatial dimen⁃sions. Foreground prediction is the basis of feature re-weighting. During training，BSM first passes the inputfrom FEM to a single-layer detection head through twoconvolutional layers. The detection head then predictsforeground regions within one heatmap. Ground-truthforeground regions are defined as the combination of allground-truth targets mapped to the heatmap. The regionof each ground-truth target is produced by a 2D-Gaussiankernel，formulated as：
K( x,y ) = exp ( - ( )x - xc 2

2σ2
x

- ( )y - yc 2

2σ2
y ) , （1）

where ( xc，yc ) is the center point of the mapped ground-

truth box，σx = αw6 and σy = αh6 ，which are determined
by width and height of the ground-truth target and the hy⁃per-parameter α. α is set to 0. 95 by default. All pointsinside the kernel are regarded as positive samples. If twokernels overlap，the element-wise maximum is taken.Focal loss［23］ is applied to train the network：

L r = -1N∑xy {( )1 - Ŷxy 2 log ( )Ŷxy if Yxy = 1
( )Ŷxy

2 log ( )1 - Ŷxy otherwise
, （2）

where N is the total number of ground-truth targets，Yxyspecifies the ground-truth foreground regions， Ŷxy de⁃notes the estimated probability for the foreground re⁃gions.As the trained BSM has the ability to predict fore⁃ground regions，the intermediate layer before the detec⁃tion head can guide the feature distribution. For compu⁃tational efficiency，only an element-wise convolution fol⁃lowed by the sigmoid function is used to re-weight the in⁃put feature maps over the spatial dimensions.
1. 4 Target prediction moduleTarget prediction module is the last module ofTCPD. It is responsible for predicting all informationthat is needed to localize and classify targets. To matchthe light-weight design of other modules，a unified struc⁃

ture including only one 3×3 convolutional layer is used inTPM，as shown in Fig. 5.

TPM treats target detection as its center localizationand size regression. For center localization，it predictscenter confidence scores of different target categories oncorresponding center heatmaps. The ground-truth heat⁃maps are produced by the same Gaussian kernel definedin Eq. 1，enabling negative samples around positive cen⁃ter points to get less penalization than those far away.Compared to the kernel used in CenterNet，our variantkernel is more reasonable. It fits the target shape betterwith two standard deviations determined by target widthand height，respectively. The hyper-parameter α is set to0. 75 by default. The center heatmaps are trained with avariant focal loss［11］：
Lk = -1N∑xyc { ( )1 - Ŷxyc 2 log ( )Ŷxyc if Yxyc = 1

( )1 - Yxyc 4 ( )Ŷxyc
2 log ( )1 - Ŷxyc otherwise

, （3）
where N is the total number of ground-truth center
points，Ŷxyc is the center confidence score of class c at lo⁃cation ( x，y )，Yxyc is its corresponding ground-truth val⁃
ue. Additional to center heatmaps，TPM also predicts co⁃ordinate offsets to compensate for the discretization errorcaused by downsampling. Center locations are adjustedslightly by offsets when remapping from the heatmap tothe original image. L1 loss is adopted for training definedas：

Lo = 1N∑p |

|
||

|

|
|| Ôp͂ - ( )p

R
- p͂ , （4）

where N is also the total number of ground-truth center
points，Ôp͂ is the predicted offset，p is the center coordi⁃nate on the original image，R is the downsampling factor
（default is 4），p͂ is the center coordinate of discretization
p
R
on the heatmap.
For size regression，TPM directly predicts the targetsize on the center point with width and height. The targetsize is also trained with L1 loss：

Ls = 1N∑k = 1
N

|| ŝk - sk , （5）
where ŝk is the predicted k-th target size，and sk is theground-truth k-th target size.

Fig. 4 The network structure of BSM
图4 BSM的网络结构

Fig. 5 The network structure of TPM
图5 TPM的网络结构
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Combined with the loss L r in BSM，the total loss Lfor training is：
L = L r + Lk + λsLs + λoLo , （6）

where λs and λo are weights for loss Ls and Lo respective⁃ly. They are set to 0. 1 in our experiments unless other⁃wise specified.Different from training，a simple post-processingmethod is introduced to generate the final predictions dur⁃ing inference. Instead of using IoU-based NMS，a 3×3max-pooling layer is used on the center heatmaps to se⁃lect the top 100 center points with the highest confidencescores. After adjusting by coordinate offsets，all selectedcenter points and their corresponding target sizes are re⁃mapped to the original image. The final results are thosewith confidence scores above a manual threshold.
2 Experiments

In this section，we first evaluate the performance ofTCPD on both the self-built infrared aerial target datasetand the public visible dataset PASCAL VOC. An abla⁃tion study is then conducted to evaluate our design fur⁃thermore.
2. 1 Dataset and implementation detailsIn our experiments，an infrared aerial target datasetis built for training and testing. There are 2 758 imageswith 3 000 labeled infrared targets in the dataset. All im⁃ages are captured from ground-to-air infrared videos. Thelabeled targets consist of five categories：bird，helicop⁃ter，airliner，trainer，and fighter. The ratio of the train⁃ing set and test set is 7：3. Results on the public datasetPASCAL VOC are also reported to verify the generaliza⁃tion ability of TCPD. PASCAL VOC dataset has naturalimages from 20 categories. The VOC 2007 and 2012 tra⁃inval sets are combined for training，while the VOC 2007test set is used for testing.We implement TCPD with Pytorch. It is trained ona single GPU 1080ti and tested on CPU 9900ks. Duringtraining，the input resolution is set to 384×384. Stan⁃dard data augmentation is applied， including randomflipping，random scaling，cropping，and color jittering.Adam is adopted to optimize the total loss. By default，TCPD is trained with a batch size of 32 for 150 epochs.The learning rate starts from 1. 25e-3 and decays by a fac⁃tor of 0. 1 at the 70th epoch，and 120th epoch.
2. 2 Target detectionAccuracy is one of the most critical metrics for a de⁃

tection model. A good light-weight model requires accu⁃rate classification and localization while keeping efficien⁃cy. We first evaluate our model on the infrared dataset.The results are shown in Table 2. The first two rows areclassic GPU-based detection models［9，13］，while the lastthree rows are CPU-based ones［3，9-10］. The backbone net⁃work of CenterNet and YOLOv3 is Res18 and Dark⁃net53. Tiny-YOLOv3 and Tiny-YOLOv4 use the lightversion of Darknet53 and CSPDarknet53 as their back⁃bones.As shown in Table 2，TCPD achieves 90. 24%mAP，which surpasses all other light-weight models. Forexample， it outperforms Tiny-YOLOv3 and FKPD by10. 16% and 1. 26%. Tiny-YOLOv4 can only achieve Ti⁃ny-YOLOv3 level accuracy with a larger input size，which sacrifices its computational efficiency greatly. It isnoteworthy that TCPD even surpasses CenterNet by2. 2%，which benefits from the design of FFM and SAM.As small targets dominate the infrared dataset，TCPDwith these modules has significant advantages. Figure 6visualizes some examples on the infrared dataset. It isclear that the detection accuracy，including classificationand localization，achieves a high level.

In addition to evaluating TCPD on the infrared datas⁃et，the model is also trained on the VOC dataset to verifyits generalization ability. The network and all training hy⁃perparameters keep the same as those used on the infra⁃red dataset. The results are reported in Table 3.As the VOC dataset contains more types of targetsand more complex scenarios，it is reasonable that largeGPU-based models with more powerful representation
Table 2 Detection results on infrared dataset
表2 红外数据集检测结果

Model
CenterNet
YOLOv3

Tiny-YOLOv3
Tiny-YOLOv4

FKPD
TCPD

Input Size
384×384
416×416
416×416
512×512
384×384
384×384

88. 04
93. 02
80. 08
82. 87
88. 98
90. 24

mAP/（%） AP /（%）
Bird
76. 73
87. 70
66. 58
85. 60
79. 40
79. 44

Fighter
88. 95
93. 97
83. 16
91. 06
90. 84
90. 69

Airliner
94. 91
95. 97
93. 85
95. 35
95. 01
96. 02

Helicopter
90. 77
94. 84
84. 92
89. 13
90. 27
94. 68

Trainer
88. 84
92. 66
71. 90
53. 23
89. 39
90. 35

Fig. 6 Examples on infrared dataset
图6 红外数据集图例
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abilities perform better than TCPD. However，TCPD stillachieves 66. 76% mAP，which is close to CenterNetwhile two times faster. Compared with Tiny-YOLOv3 andFKPD，TCPD surpasses them by 8. 26% and 5. 05%，re⁃spectively. As for the latest Tiny-YOLOv4，TCPD stilloutperforms it by 1. 05%. The results demonstrate thatTCPD can adapt target detection better in different appli⁃cations. Some examples are shown in Fig. 7.

2. 3 Inference speedAs discussed，inference speed plays a significantrole in determining whether the model can be applied inmost IR systems without GPU acceleration. Computation⁃al cost（FLOPs）and model size（Parameters）are twokey metrics to evaluate a light-weight model. The compu⁃tational cost has a direct influence on the inferencespeed. Lower FLOPs always mean faster detection.While the model size directly affects the storage cost. Amodel with fewer parameters makes it easier to deployand has lower FLPOs. Table 4 shows the efficiency teston the infrared dataset. In addition to calculates FLOPsand the number of parameters，we also test the inferencespeed running on the CPU in practice. For fairness，weinput one infrared image once a time on a single thread.The resolution of all input images is fixed to 384×384.The final inference time is the average of 100 images cal⁃culated.With only 0. 49 billion FLOPs and 0. 95 million pa⁃rameters，TCPD achieves real-time single frame detec⁃tion on the CPU at a speed of 21. 69 ms. It is 10. 02 msand 4. 17 ms faster than Tiny-YOLOv3 and FKPD，withmerely 21% and 34% FLOPs. The speed of Tiny-YO⁃LOv4 is on par with FKPD，which is 4. 54 ms slower

than TCPD. Compared with the other two GPU-basedmodels，the speed advantage of TCPD is more signifi⁃cant. Combined with the discussion in subsection 2. 2，TCPD achieves a better performance，which keeps thebalance of accuracy and speed. As a result，it is moresuitable for the application in CPU-only IR systems，which requires accurate target detection at a real-timespeed.

2. 4 Ablation studyIn this subsection，we first evaluate the network de⁃sign of TCPD. Experiments include varying input resolu⁃tion，compressing the feature channel，and module abla⁃tion. The results are shown in Table 5. We choose thedefault configuration used in 2. 2 as the baseline. All ex⁃periments are conducted on the infrared dataset.Input resolution is an important factor that has a no⁃table influence on the performance of TCPD. Smaller im⁃ages mean low-resolution feature maps，which leads tothe loss of detailed features. Larger images can improvedetection accuracy while slows down the inferencespeed. Line 2 and line 3 in Table 5 verify this conclu⁃sion. TCPD-compressed（line 4） is proposed for moresensitive applications to the computational cost and de⁃tection speed. It decreases the channels of FEM startingfrom“Stage3”with｛48，96，192｝，and the inferencespeed is up to 17. 90 ms with only 0. 19 billion FLOPsand 0. 19 million parameters. The last two lines explorethe effectiveness of FEM and BSM. From the experi⁃ments，both have positive effects on the detection accura⁃cy while having limited overheads on the inferencespeed. The mAP decreases 0. 95% and 1. 49% wheneliminating FFM and BSM，respectively.

Table 3 Detection results on VOC dataset
表3 VOC数据集检测结果

Model
CenterNet
YOLOv3

Tiny-YOLOv3
Tiny-YOLOv4

FKPD
TCPD

Input Size
384×384
416×416
416×416
416×416
384×384
384×384

mAP/（%）
68. 24
76. 80
58. 40
65. 71
61. 61
66. 76

Fig. 7 Examples on the VOC dataset
图7 VOC数据集图例

Table 4 Real-time analysis of TCPD
表4 TCPD实时性分析

Model
CenterNet
YOLOv3

Tiny-YOLOv3
Tiny-YOLOv4

FKPD
TCPD

FLOPs/Bn
8. 69
27. 93
2. 34
2. 91
1. 55
0. 49

Parameters/M
14. 22
61. 63
8. 68
5. 88
2. 03
0. 95

Inference Time/
ms
48. 90
134. 07
31. 71
26. 23
25. 86
21. 69

Table 5 Ablation study on the design of model
表5 模型设计的消融实验

Model
TCPD（baseline）
TCPD-small
TCPD-large
TCPD-com⁃
pressed

TCPD w/o FFM
TCPD w/o BSM

Input Size
384×384
320×320
512×512
384×384
384×384
384×384

mAP/（%）
90. 24
89. 85
92. 38
88. 60
89. 29
88. 75

Inference Time/
ms
21. 69
18. 22
32. 70
17. 90
20. 15
20. 43
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In addition to the network design，we also investi⁃gate the influence of the Gaussian kernel defined in Eq.1. As the kernel is only used to define the penaltyweights of negative samples around center points in heatmaps during training，it does not affect the inferencespeed. Table 6 shows the detection results on both datas⁃ets with different standard deviations controlled by α.Ranging from 0. 35 to 0. 95，the variation of α actu⁃ally affects the scale of negative samples with penaliza⁃tion other than 0 inside the ground-truth box. An appro⁃priate α can improve the detection accuracy. For the in⁃frared dataset with more small targets，the choice is moreflexible. While for the VOC dataset with larger targets，the impact is significant. As a result，the choice shouldbe more careful.

3 Conclusion
We proposed a new real-time infrared target detec⁃tion model TCPD based on center points. With the bene⁃fit of lightweight design，its computational cost is low，and it can keep the fast inference speed on CPU-only de⁃vices. In addition to fundamental feature extraction andtarget prediction，the Feature Fusion Module and Back⁃ground Suppression Module are designed to improve fea⁃ture representation. Evaluations on both infrared andVOC dataset demonstrate the outstanding performance ofTCPD as it achieves a better balance between accuracyand speed. In summary，it provides a new choice for re⁃al-time detection in IR systems. In the future，we plan toinvestigate methods such as network pruning to speed upthe model while keeping detection accuracy and finallydeploy it as a key module in real infrared tracking sys⁃tems.
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Table 6 Ablation study of Gaussian kernel
表6 高斯核的消融实验

α

0. 35
0. 55
0. 75
0. 95

Dataset（mAP/（%））
Infrared
89. 42
90. 56
90. 24
90. 31

VOC
64. 81
66. 00
66. 76
66. 24
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