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Abstract：The suspended sediment concentration（SSC）is an extremely important property for water monitor⁃
ing. Since machine learning technology has been successfully applied in many domains，we combined the
strengths of empirical algorithms and the artificial neural network（ANN）to further improve remote sensing re⁃
trieval results. In this study，the neural network calibrator（NNC）based on ANN was proposed to secondarily
correct the empirical coarse results from empirical algorithms and generate fine results. A specialized regulariza⁃
tion term has been employed in order to prevent overfitting problem in case of the small dataset. Based on the
Gaofen-5（GF-5）hyperspectral remote sensing data and the concurrently collected SSC field measurements in the
Yangtze estuarine and coastal waters，we systematically investigated 4 empirical baseline models and evaluated
the improvement of accuracy after the calibration of NNC. Two typical applications of NNC models consisting
baseline model calibration and temporal calibration have been tested on each baseline models. In both applica⁃
tions，results showed that the calibrated D’Sa model is of highest accuracy. By employing the baseline model cali⁃
bration，the root mean square error（RMSE）decreased from 0. 1495 g/L to 0. 1436 g/L，the mean absolute per⁃
centage error（MAPE）decreased from 0. 7821 to 0. 7580 and the coefficient of determination（R2）increased from
0. 6805 to 0. 6926. After implementation of the temporal calibration，MAPE decreased from 0. 8657 to 0. 7817
and R2 increased from 0. 6688 to 0. 7155. Finally，the entire GF-5 hyperspectral images on target date were pro⁃
cessed using the NNC calibrated model with the highest accuracy. Our work provides a universal double calibra⁃
tion method to minimize the inherent errors of the baseline models and a moderate improvement of accuracy can
be achieved.
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摘要：悬浮泥沙浓度是水体监测中极为重要的指标。本论文基于神经网络具有弥补传统经验算法固有误差

的潜力，设计并开发了基于人工神经网络的神经网络校正器来对经验反演结果进行二次校正。为了防止在

小数据集的情况下出现过拟合问题，采用了特殊设计的正则化项。基于高分五号高光谱遥感数据以及在长

江口和沿海水域同时收集的悬浮泥沙浓度实地测量结果，研究了 4种基线经验模型，并评估了使用神经网络

校正器后的精度。在每个基线模型上都测试了神经网络校正器模型的两个典型应用，包括基线模型校正和

时间校正。在这两种应用中，结果均表明，经校正的D'Sa模型具有最高的准确性。通过使用基线模型校正，
均方根误差从 0.1495 g/L降低至 0.1436 g/L，平均绝对百分比误差从 0.7821降低至 0.7580，决定系数从 0.6805
升高至 0.6926。实施时间校正后，平均绝对百分比误差从 0.8657降低至 0.7817，决定系数从 0.6688升高至

0.7155。最后，基于神经网络校正器校正后精度最高的模型处理了整幅高分五号高光谱图像。本论文结果为

各种经验反演算法提供了一种通用的二次校正方法，以最大程度地减少基线模型的固有误差，并且保证了反

演精度。
关 键 词：神经网络校正器；机器学习；高光谱；高分五号卫星；水质；悬浮泥沙浓度
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Introduction
Due to the optical reflectance，scattering and ab⁃sorption of different substances，distinct optical proper⁃ties of the surface reflectance have the great capabilitiesof extracting the information of the water quality parame⁃ters［1-6］. With the advances of computer calculation andthe development of the remote sensing technology，espe⁃cially spaceborne optical sensors， it is possible toachieve both the wider spatial range and the higher preci⁃sion of water quality parameters（WQPs）retrieval［7-9］.The suspended sediment concentration（SSC）is anextremely important property for water monitoring，whichis the consequence of aquatic degradation and soil ero⁃sion for deforestation and urbanization. The SSC is typi⁃cally defined as the total concentration（g/L or mg/L）ofboth organic and inorganic matter suspended in the waterbecause of the turbulence［10］. SSC can also be denoted asthe total suspended matter（TSM），suspended particu⁃late matter（SPM） and total suspended solids（TSS），etc［11］. The correlation between SSC and turbidity makesit easy to set certain landmark with known clarity in themap to intuitively evaluate the retrieval accuracy. Ac⁃cording to the historical development of retrieval algo⁃rithms of the WQPs from remotely sensed data，there arebroadly three approaches： analytical， semi-analyticaland empirical approaches［12］. The empirical algorithmshave been widely used because of the advantages of theeasy implementation and the requirement of less field⁃work. A widespread empirical algorithm early developedin the International Ocean-Colour Coordinating Group

（IOCCG）is the color-ratio algorithm based on the expo⁃nential function and band ratio of reflectance in order tocompensate the intensity deviation of the light at differentspots［13］. D’Sa et al. presented an empirical algorithmdesigned for moderately turbid waters based on the bandratio between the wavelength 670 and 555 nm for remotesensing reflectance（Rrs），which has been found highlycorrelated［14］. Nechad et al. argued that the use of a sin⁃gle band algorithm can also provide accurate results withthe proper selection of the band［15，16］. Chen et al. testedvarious SSC retrieval models such as single band and dif⁃ference of two bands based on moderate resolution imag⁃

ing spectroradiometer（MODIS）in a wide-range SSC con⁃centration［16］. However，traditional empirical algorithmshave the limitations for using the fixed mathematical for⁃mula forms，such as exponential function and band ra⁃tio，and thus can be further optimized by diminishingcomplex model errors.Recently，with the improvement of computationalpower and the development of machine learning technolo⁃gy， rather complex WQP retrieval problems can besolved. The artificial intelligence technology holds theadvantage of retrieving different water parameters basedon a single machine learning algorithm. Plenty of imple⁃mentations of machine learning algorithms such as multi⁃linear regression［17］，support vector machine［1］ and artifi⁃cial neural network（ANN）［18-20］have achieved high accu⁃racy in WQP inversion problems. Wei et al. employedthe least-squares support vector machine parameterizedthrough the particle swarm optimization algorithm for SSCestimation based on unmanned aerial vehicle-borne hy⁃perspectral images［1］. Hafeez et al. evaluated the retriev⁃al potential by comparing several machine learning algo⁃rithms and extracted the relative variable importancewhich is an indicator for further research［21］. In spite ofthe black-box essence and difficulty of deconstructing，machine learning algorithms are still extensively and suc⁃cessfully applied in remote sensing retrieval of WQPs.In recent years，many new satellites equipped withadvanced imagers，which can obtain increasing spatialcoverage，spectral resolution and spectral range，havebeen launched for general or specific purposes［22］.Gaofen-5（GF-5）satellite equipped with 6 payloads aimsat geographic and atmospheric monitoring，which wassuccessfully launched on May 9，2018 in China［23，24］.The Advanced Hyper Spectral Imager（AHSI），one ofthe payloads，obtains 330 high-resolution bands in thespectral range from 400 to 2500 nm with the swath widthof 60 km，which is highly progressive in the world［25］.In this study，we systematically investigated theSSC retrieval in the Yangtze estuarine and coastal watersby implementing several empirical baseline models basedon the GF-5 hyperspectral images and SSC field measure⁃ments collected simultaneously. A neural network cali⁃brator（NNC）for double calibration was proposed to com⁃
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bine the advantages of ANN and the traditional empiricalalgorithms. This combination can compensate the inher⁃ent errors of the empirical models and reduce the datathat ANN requires. In order to prevent the overfittingproblem，an identity function was pretrained and a spe⁃cialized regularization term was employed. Two typicalapplications of the NNC model including baseline modelcalibration and temporal calibration have been investigat⁃ed based on 4 baseline algorithms. With the small size ofdataset，a moderate improvement of accuracy has beenachieved in both applications. Finally，the entire hyper⁃spectral images on target date were processed using thealgorithms with the highest accuracy to analyze the distri⁃bution of SSC and finish the reality check. This paperprovides a universal secondary calibration method basedon ANN to minimize the inherent errors of baseline mod⁃els.
1 Materials and methods
1. 1 Locations of SSC measurementsThe Yangtze Estuary is selected as the area to inves⁃tigate SSC retrieval algorithms. The Yangtze River，thelongest river in Euro-Asian continent，rises in the Tibet⁃an Plateau，flows generally 6300 km to the East ChinaSea and generates the Yangtze Estuary. The prosperousYangtze Estuary，the geographically largest，most dense⁃ly populated and industrialized area of China，plays animportant role in geochemical cycles for a considerableamount of sediment suspended in the Yangtze River. Thesuspended sediment load per year from the Yangtze Riverreaches approximately 480 million tons and nearly 40%of the load is deposited in the Yangtze Estuary making itan extremely highly turbid region［26］. Besides，the Yang⁃tze Estuary is characterized by the optical complexity be⁃cause of the low salinity，high levels of nutrients，tidalcurrents and the biogeochemical environment［27-29］.Thus，the researches on the Yangtze coastal and estuari⁃an waters are challengeable and valuable.The Yangtze Estuary starts from Xuliujing and endsat the East China Sea，presenting a“three-order bifurca⁃tion and four outlets into the sea”pattern. The YangtzeEstuary is firstly divided by the Chongming Island andHengsha Island into the North and the South Branch.Then the South Branch is secondly separated by Changx⁃ing Island and Hengsha Island into the North and SouthChannel. Finally，the South Channel is split into theNorth Passage and the South Passage by Jiuduansha wet⁃land［23，30］. With respect to the calibration and validation，the field measurements were concurrently collected ac⁃cording to the satellite overpassing time so as to provide auniversal evaluation of accuracy. A total number of 14water samples consisting 4 samples from 27 March，3samples from 24 May and 7 samples from 31 October2019 were taken as shown in Figure 1. The field mea⁃surements collected by the buoy stations were obtainedusing the optical backscattering sensors（OBS） at 10-minute intervals and the linear interpolation was used toestimate SSC value at the satellite overpassing time basedon the neighboring collected data. The field measure⁃

ments collected by ships were obtained simultaneously atthe satellite overpassing time using the weighing methodwith drying and filtration［31］.
1. 2 The GF-5 hyperspectral imagesGF-5 satellite，launched on May 9 2018，denotes apolar-orbiting satellite of a series of China High-resolu⁃tion Earth Observation System（CHEOS）satellites of theChina National Space Administration，which has takenan AHSI designed and developed by Shanghai Institute ofTechnical Physics（SITP），Chinese Academy of Scienc⁃es［24］. The main characteristics of the GF-5 AHSI areshown in Table 1 according to the report from the ChinaCentre for Resources Satellite Data and Application.Note that the GF-5 AHSI collects 330 spectral bands intotal from 400 to 2500 nm with a very high spectral reso⁃lution（i. e.，5 and 10 nm for visible and near-infrared
（VNIR）and short-wavelength infrared（SWIR）bands，respectively），meanwhile covering a viewing width of 60km with high signal-to-noise ratio（SNR）. Both its view⁃ing width and number of spectral bands exceed other on⁃board spaceborne hyperspectral imager，such as EO-1Hyperion and HICO of USA，HysIS of India and DESISof Germany［25］. In this paper，the hyperspectral imageswere taken on 27 March，24 May and 31 October 2019.Note that 3 cloud-free hyperspectral images taken on 31October 2019 with spatial coverage of the Yangtze estuar⁃ian and coastal waters were selected for best visualizationof final results.
1. 3 Hyperspectral image preprocessingThe space-borne hyperspectral images were prepro⁃cessed in ENVI software as follows：orthorectification，radiometric calibration，atmospheric correction，mask⁃ing and water extraction［23］. By preprocessing，digitalnumber（DN）values of origin images were translated tosurface reflectance.1）OrthorectificationThe GF-5 hyperspectral images contain the neces⁃sary information，i. e.，the Rational Polynomial Coeffi⁃cients（RPCs），to complete the photogrammetric pro⁃cessing. The ENVI RPC Orthorectification tools use RPCinformation and a high-resolution digital elevation model
（DEM）to create a geometrically corrected image.2）Radiometric calibrationThe conversion from the quantized DN of raw imag⁃ery into at-aperture radiance（W∙m-2∙sr-1∙μm-1）is a lin⁃
ear transformation described in Eq. （1） based on thegain and offset coefficients from the auxiliary informationprovided in GF-5 AHSI. In our experiment，the vicari⁃ous calibration coefficients mentioned in［32］were used.

Radiance = Gain*DN + Offset . （1）
3）Atmospheric correctionThe next step is atmospheric correction which re⁃moves or decreases the influence of the atmospheric scat⁃tering，absorption and reflection and translates the at-ap⁃erture radiance to the surface reflectance signature［33］.The Fast Line-of-sight Atmospheric Analysis of SpectralHypercubes（FLAASH）model was used in this paper.In this research of the Yangtze coastal and estuarine wa⁃ters，the atmospheric model and aerosol model were set
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as“Mid-Latitude Summer”and“Rural”，respectively.4）Masking and water extractionOpen water body can be identified via the Normal⁃ized Difference Water Index（NDWI）method，as in ［34］.The NDWI can be calculated as follows：
NDWI = Green - NIR

Green + NIR ，（2）
where Green and NIR represent the surface reflectance ofgreen and near-infrared（NIR）bands，respectively. Inour experiment，wavelengths of 895 and 565 nm were se⁃lected as the NIR and green bands respectively by observ⁃ing and comparing the surface reflectance curves of waterbody with those of other terrain types.
1. 4 Retrieval methodBased on the preprocessed AHSI data and field mea⁃surements，the entire procedures of the SSC retrieval areshown in Figure 2. In the input procedure，variables areinitialized in order to prepare the required data for thenext steps. The weights in ANN are initialized by simu⁃

lating the identity function as pre-training. λ is a hyper⁃parameter used to test the generalization ability of theANN model. Dataset partition is employed to be readyfor the implementation of the improved k-fold cross-vali⁃dation method. The processing procedure is achieved bytwo steps. First，we use empirical algorithms as baselinemodels to generate the coarse results. Next，the NNCmodel is employed for secondary correction to compen⁃sate the non-linear components which cannot be de⁃scribed by the empirical algorithms. In this step，theNNC model takes the coarse results as inputs and outputsthe corrected fine results. Besides，an evaluation of 3 as⁃sessment parameters is utilized to test the generalizationperformance of trained ANN under different λ. Finally，the network parameters and hyperparameter λ of theANN with the best generalization ability are selected.More details are mentioned later in this section.
1. 4. 1 Baseline modelsThere are generally three approaches for quantita⁃tive remote sensing of WQPs：the empirical，analyticaland semi-analytical approaches［12］. The empirical algo⁃rithms take the key advantages of easy implementation，computational simplicity and requirement of less field⁃work based merely on the simultaneous field measure⁃ments and remote sensing data. These algorithms gener⁃ally provide robust accuracy for the calibrated area due tothe assumptions that the inverse modeling of water and at⁃mosphere remains the same throughout this region. Con⁃sidering the same regional assumptions and computation⁃ally consuming features held by the NNC，empirical algo⁃

Fig. 1 Locations of 14 SSC field measurements on March 27（blue），May 24（brown）and 31 October（black）2019 near the Yangtze
estuarine and coastal waters. The stars and diamonds represent the field measurements collected by the buoy stations and ships，respec‐
tively
图1 长江河口卫星地面SSC同步实测位置示意图

Table 1 Main parameters for GF-5 AHSI
表1 高分五号高光谱卫星的主要参数

Parameters
Spatial Coverage
Spectral Range

Spectral Resolution
Spatial Resolution
Signal to Noise

Capability
60 km

400~ 2500 nm
VNIR：5 nm，SWIR：10 nm

30 m
100~200
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rithms were chosen for the basic inverse modelling. Con⁃sidering the Yangtze Delta being highly turbid，accord⁃ing to the research of Freeman et al. ［11］，4 typical algo⁃rithms were employed in this paper，which took surfacereflectance as input. Besides，these baseline algorithmsutilized either single band，band ratio or band arithmeticas the independent variable in the form of linear and non-linear models，including linear，exponential and powerfunction models. The first algorithm was developed inthe northern Gulf of Mexico by D’Sa utilizing Rrs for Sea⁃WIFS sensor［14］. Developed as a band ratio power func⁃tion model based on two SeaWIFS bands（555，670nm），a wide range of SSC and high tolerance for differentpreprocessing methods can be achieved via this model：
SSC = A* ( Rrs (670)

Rrs (555) )
B ，（3）

where A and B represent the fitting coefficients.Nechad et al. presented that the single band modelcan provide a robust SSC retrieval accuracy for case IIturbid waters based on appropriate band selection around700 nm. The recommended linear form of this algorithmis as follows［15］：
SSC = A*Rrs (Best Band ) + B ，（4）

where Best Band denotes the band selected using exhaus⁃tive search method. In order to translate this algorithmfrom MERIS，MODIS and SeaWIFS sensors to GF-5 AH⁃SI，we tested entire 48 bands from 600 - 900 nm to lo⁃cate the Best Band.Similar to the Nechad model，Ruhl et al. derivedand tested a single band exponential algorithm measuredin the very turbid San Francisco Bay，California［35］：
SSC = AeB*Rrs (Best Band ) . （5）

In this research，the algorithm was built based onfield measurements collected from 1994 to 1998 withSSC values ranging from 0 to over 400 mg/L. This algo⁃rithm obtained R2=0. 59.Considering the model developed by Loisel et al. inthe highly turbid Mekong River Delta with SSC maximumvalues over 5000 mg/L，three bands（489，557 and 668nm）are utilized here to adapt to the GF-5 AHSI［36］：
SSC = 10A + B (Rrs (557) + Rrs (668) ) - C (Rrs (489) /Rrs (557) ) ，（6）

where A，B and C are the fitting parameters.
1. 4. 2 Neural network calibratorOur intuition of designing NNC is combining thecomplementary advantages between empirical modelsand ANN. Compared to empirical models which lack cer⁃tain complex nonlinear features，NNC obtains the greatcapability of the ANN in extracting potential features andgenerating highly complex nonlinear functions. Howev⁃er，the ANN model requires a large dataset to preventoverfitting problem，which is hard to be satisfied in thefield of remote sensing. In order to prevent the overfittingproblem，the simple empirical models with just a few pa⁃rameters can help ANN to reduce the required parameternumber. By using transfer learning，our ANN is firsttrained to learn an identity function，aiming at learningthe hypothesis of baseline models which require fewer pa⁃rameters. Following this intuition，we proposed the NNCwhich takes the coarse results of baseline models as inputand generate the calibrated fine results.Usually，the ANN model consists of a collection ofthe connected neurons（or nodes） and correspondingweights assigned with links in the multilayer structurewhich typically includes an input layer，one or more hid⁃den layers and an output layer. In this work，we aim to

Fig. 2 Flow diagram for the entire SSC retrieval process.
图2 SSC反演流程图
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secondarily calibrate the baseline SSC results and gener⁃ate more precise results. In detail，the input of ANN isone baseline retrieval result and the output takes the cor⁃responding field measurement as the label. Thus，a clas⁃sical three-layer feed forward network with one node inthe input layer and one node in the output layer was em⁃ployed to update each input to a better output. Further，the number of nodes in the hidden layer should be smallin order to reduce network parameters and prevent theoverfitting problem. In our experiment，a hidden layercontaining 10 nodes was selected for the small size of pa⁃rameters and enough nonlinear expression ability. Final⁃ly，a sigmoid function was added after the output layerfor activation. Below，we formulate the general form ofANN. In the feed forward process of prediction，the nodevector of the former layer is multiplied with correspond⁃ing network parameters，added to a bias and then activat⁃ed by the sigmoid function to obtain the node vector ofthe latter layer，as follows：
g ( z ) = 1/ (1 - e-z ) ，（7）

a( )l + 1 = g (a( )l θ( )l + θ ( l )0 ) ，（8）
hθ ( x ) = a( )3 ，（9）

where g ( z ) is the sigmoid function，a( l ) is the activated
node vector of layer l，θ ( l ) is the network parameter ma⁃trix from layer l to（l+1），θ ( l )0 is a bias value from layer lto（l+1）and hθ ( x ) is the hypothesis value of the outputlayer with x being the input value. Specifically，given Slnodes in the layer l，the shape of a( l ) is 1 × Sl and theshape of θ ( l ) is Sl × Sl + 1.The cost function（or loss）describes the error be⁃tween the prediction values and the ground truth. Theback propagation（BP）algorithm has been employed toiteratively minimize the cost function and complete thetraining process. Furthermore，we developed a distinctcost function with the purpose of optimizing the baselinemodel accuracy. The basic cost function is shown inEq.（10）.
Cost Function =

1
N∑i = 1

N

[ ]-y( )i log ( )hθ( )x( )i - ( )1 - y( )i log ( )1 - hθ( )x( )i

，（10）
where N represents the number of training data，hθ is thehypothesis values in the output layer，x is the baselinepredictions in the input layer and y is the values of thefield measurements. The regularization term is oftenused to penalize network parameters and improve the gen⁃eralization ability of the ANN model. Here，a special⁃ized regularization term is added to the cost function：

Cost Function + = λ
2N∑l = 1

L∑
j = 1

Sl + 1∑
p = 1

Sl + 1
( )Θ( )l

j,p - Θ( )l
j,p,init

2
，(11)

where λ is the regularization hyperparameter controllingthe degree of penalty，L is the layer number of the inputand hidden layers，Sl is the number of nodes in the layer
l and Θ( )l

j，p represents the network parameter linking thelayer l node p to the layer（l+1）node j. An extra networkbased on identity function，i. e. inputs equal to outputs，

was pre-trained to obtain the initial parameters Θinitwhich provide the initial hypothesis based on baselinemodels to guarantee accuracy improvement after the sec⁃ondary calibration.A systematical investigation of two typical applica⁃tions of NNC including baseline model calibration andtemporal calibration has been presented. As for the base⁃line model calibration，aiming to compensate the inher⁃ent errors of the baseline models，the field measurementsfrom 31 October 2019 were used both for fitting the base⁃line model and the secondary calibration of the NNC mod⁃el. As for the temporal calibration，the purposes are thespecialization of the parameterized historical model toadapt to the specific new field measurement data and thecorrection of inherent baseline errors. In this case，thebaseline model was fitted as the historical model basedon the in situ data from 27 March and 24 May 2019.Then，an extra linear calibration（LC）model was fittedto assign prediction results of the historical model to re⁃sults on the specific date by using the data from 31 Octo⁃ber 2019. Finally，the NNC model was trained based onthe data from 31 October 2019 to secondarily calibratethe historical model to adapt to the specific date.
1. 4. 3 Statistical analysisIn order to gain better understanding of the variousmodels，the accuracy for calibration and validation canbe statistically evaluated by the three indices，root meansquare error（RMSE），the mean absolute percentage er⁃ror（MAPE）and the coefficient of determination（R2）.RMSE and MAPE are defined as follows：

RMSE = 1
N∑i = 1

N ( )XEst,i - XMea,i
2

，（12）

MAPE = 1N∑i = 1
N || XEst,i - XMea,i

XMea,i
，（13）

where N is the total number of samples，XEst，i is the esti⁃mated value and XMea，i is the field measurement value.The RMSE maintains the same unit as the in situ dataand thus is intuitive and representative of the size of er⁃ror. Besides，because of the disproportionate weight giv⁃en by the squaring process，the RMSE is sensitive to oc⁃casional large errors and performs well in the situationwith no outliers. As expressed in relative meaning，thisstatistical measurement can be compared widely acrossdistinct data ranges. It is notable that the MAPE puts aheavy penalty on errors of small SSC values due to the ra⁃tio form，which leads to a significant complement of theRMSE. R2 is defined as：
R2 = 1 - RSSSST =

SSR
SST ，（14）

where SSR is the sum of squares for regression，RSS isthe residual sum of squares，SST is the total sum ofsquares and R2 is defined as the ratio of SSR to SST. R2generally provides a replicated percent of the model forfitting the observation outcomes. With respect to thesmall size of in situ dataset，an improved k-fold cross val⁃idation method has been designed and implemented toprecisely calculate 3 accuracy assessment parameters.
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The method can be described in three steps.
（1）The first step is to select a reasonable numberof training data. Mention that the number should begreater than the free degree of baseline models and lessthan the total number of the dataset minus 3 to obtain thevalid R2. Here the size of the training set is selected as 4.
（2）The next step is to find out all the possible situa⁃tions via combination to pick training data from the totaldataset and the number of situations here is C47 = 35.
（3）After completing the division to different train⁃ing and validation groups，each statistical parameter forvalidation of the groups can be calculated and the aver⁃age is taken as the final evaluated accuracy.It is indicated that every possible combination of thetraining and test data groups can account for the final av⁃erage accuracy. However，due to fast growing rate of fac⁃torial function， this improved k-fold cross validationmethod can only be considered in the small size of datas⁃et.

2 Results
2. 1 Field measurements and spectral reflectanceIn our research，field measurements of SSC havebeen collected concurrently to the GF-5 overpass basedon the aforementioned method. The total 14 in situ SSCdata measured on buoy stations and ships using dryingand filtration process and optical backscattering methodrespectively was statistically analyzed in a line chart asshown in Figure 3. The SSC values of samples 1，2，5and 7 are high over 0. 35 g/L and the sample 7 achievesthe highest concentration of 0. 76 g/L. The higher SSC

values on 31 October 2019 is probably caused by thenearly highest tide of the day according to the official tidetable. The solid yellow line indicates the trend of sorted7 in situ data on 31 October 2019. Note that the 7 fieldmeasurements are distributed relatively evenly in the spa⁃tial domain and the SSC measurements spread relativelyequally ranging from 0. 026 to 0. 76 g/L. Hence，thefield measured data of 31 October 2019 has the capabili⁃ty of representing the real SSC features in a wide range inspite of low number，which can provide more informationfor ANN to learn from，comparing the highly centralizeddataset of the same size.The preprocessed surface reflectance curves extract⁃ed in the highly likely estuarine spots of low，middle andhigh SSC values on each individual date are shown in Fig⁃ure 4（a），（b）and（c）. Besides，some preprocessedsurface reflectance curves of typical ground objects on 31October 2019 are depicted for comparison in Figure 4
（d）. Notice that in the radiometric calibration process vi⁃carious and onboard parameters are applied for the imag⁃es of 31 October 2019 and the other dates，respectively.In terms of low and middle turbid waters，a similar bi⁃modal reflectance shape can be concluded through all 3graphs. The two distinct spectral peaks appear in the vi⁃cinities of 580 and 820 nm. The first peak is jointlycaused by the strong absorptive effect by CDOM and phy⁃toplankton at shorter wavelengths and the exponential in⁃creasing absorption by water molecules［37，38］. The secondpeak is generated for the combined effect of the highamount of suspended sediments and the strong absorptionof water molecules between 700 ~ 750 nm，which is high⁃

Fig. 3 Line chart of total in situ SSC data. The number 1~7，8~10，11~14 samples were measured on 31 October，24 May and 27
March 2019，separately. A separation line（purple）is plotted to highlight the water samples 1~7 used for the final retrieval. The blue to
yellow colors of dots intuitively show the low to high SSC levels. The lines drew in blue and orange represent the origin SSC values of
all 3 days and sorted SSC values of 31 October 2019，respectively
图 3 实测SSC数据 . 点 1~7，8~10，11~14分别代表了 2019年 10月 31日，5月 24日和 3月 27日的结果 . 紫色分隔线用于突出点 1~
7，点的蓝色到黄色反映了从低到高的SSC浓度，蓝色和橙色线分别代表了原始SSC数值和排序后的2019年10月31日SSC数值 .
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ly correlated to SSC. As the SSC increases，a new peaknear 681 nm emerges due to phytoplankton and the mutu⁃al cancellation of the high reflectance of suspended parti⁃cles and the strong absorption of water molecules［37，39］.According to documented locations of the 7 watersamples on 31 October 2019，the preprocessed surfacereflectance curves of GF-5 images are shown in Figure 5.The similar bimodal spectral characteristics and the gen⁃eral trend of increasing reflectance with the increment ofsuspended particles at approximate 820 nm can also beobtained.
2. 2 Retrieval results of baseline model correctionIn normal case that only in situ data on targetingdate is available，NNC can be easily implemented to im⁃prove the accuracy of baseline models through compen⁃sating the inherent errors of the baseline models. By se⁃lecting the in situ data of 31 October 2019 as the wholedataset and using the improved k-fold cross validationmethod with 4 as the size of the training dataset，the SSCretrieval results of the baseline models and NNC are

shown in the Table 2. Note that the band selection of thebaseline Nechad and Ruhl models was accomplished byexhaustive search.From the results，it is noticeable that the accuracyof the baseline model has been enhanced moderately forall RMSE，MAPE and R2 after the double calibration ofNNC. Because of the high sensitivity of RMSE andMAPE in terms of the high and low SSC values respec⁃tively，the calibrated results perform better in both SSCranges，which indicates the effectiveness of our proposedNNC method. The calibrated D’Sa model achieved thehighest accuracy. After calibration，RMSE decreasedfrom 0. 1495 to 0. 1436 g/L，MAPE decreased from0. 7821 to 0. 7580 and R2 increased from 0. 6805 to0. 6926. Besides，the highest improvement of accuracywas achieved by the Loisel model which had the worstperformance in our limited dataset. After calibration，RMSE decreased by 19. 2% from 0. 4941 to 0. 3993 g/L，MAPE decreased from 2. 5812 to 2. 1995 and R2 in⁃creased from 0. 2914 to 0. 3992.

Fig. 4 Spectra of the surface reflectance in the research region on 27 March（（a））24 May（（b））and 31 October（（c））2019. The dotted，
dashed and solid lines represent the low，middle and high SSC values，respectively（（d））some surface reflectance spectra extracted from
different typical ground objects on 31 October 2019
图 4 不同时间的光谱反射率曲线 . 2019年（a）3月 27日（b）5月 24日（c）10月 31日 . 点线、虚线、实线线型分别代表了低、中、高
的SSC浓度值（d）不同典型地物的反射率光谱曲线（2019年10月31日）

Table 2 Comparison between baseline and NNC results in the application for baseline model calibration.
表2 基线模型校正应用中的基线和NNC结果比较

Modeling Method

D’Sa
Nechad
Ruhl
Loisel

Independent Variables（（nm））

668，549
758
745

557，489，668

Baseline

RMSE（（g/L））

0. 1495
0. 1587
0. 2104
0. 4941

MAPE

0. 7821
0. 8049
1. 1142
2. 5812

R2

0. 6805
0. 6729
0. 6039
0. 2914

NNC

RMSE（（g/L））

0. 1436
0. 1567
0. 1939
0. 3993

MAPE

0. 7580
0. 7657
0. 9849
2. 1995

R2

0. 6926
0. 6772
0. 6336
0. 3992
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In order to overcome the problem of overfitting，awide range of hyperparameter λ in the regularization termhas been employed to test the generalization ability of theNNC model and thus the optimum λ of the best general⁃ization performance of NNC is selected. The dependencerelationships of λ and corresponding RMSE，MAPE，R2are displayed in the Figure 6. In general，the curves de⁃crease at the beginning and then increase with the in⁃

creasing of λ for RMSE and MAPE and an inverse trendis for R2. The up-down shapes of the accuracy are associ⁃ated with underfitting and overfitting problems. Hence，the λ corresponding to the general extremum of thecurves is chosen to gain the optimum generalization per⁃formance. Note that the smaller hyperparameters alwayslead to a better improvement after the secondary calibra⁃tion of NNC. However，rather big hyperparameters maybe selected due to the small size of the training dataset soas to prevent overfitting. Besides，in order to visualizethe NNC model，the relationships of the predicted valuesand the field measurements have been plotted as shownin Figure 7. The nonlinear errors of the baseline modelscan be visualized according to the NNC curves whichmay be clues for modifying the original baseline models.In spite of the slight difference between the NNC curveand the initial identity function due to the huge regular⁃ization hyperparameter used for preventing overfitting，aclearly moderate improvement can be available which isthe evidence of the effectiveness of the application for thebaseline model calibration.
2. 3 Retrieval results of temporal calibrationWhen the baseline models calibrated and validatedbased on extra historical data are available，the NNCmodel can be used to adjust the existing model to adapt tospecific date with an extra LC step. Our intuitive of the

Fig. 5 The 7 examples of preprocessed surface reflectance spec‐
tra for different SSCs measured on 31 October 2019
图5 7种SSC浓度的反射率光谱曲线（2019年10月31日）

Fig. 6 The relationships between the regularization hyperparameter λ，RMSE，MAPE and R2 for D’Sa（（a））Nechad（（b））Ruhl（（c））and
Loisel（（d））models in the application for baseline model calibration
图6 在基线模型校正应用中的正则化参数 λ，RMSE，MAPE and R2（a）D’Sa模型（b）Nechad模型（c）Ruhl模型（d）Loisel模型
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temporal calibration is that adding extra historical infor⁃mation may generate better results. By selecting 4 as thesize of the training set and using the improved k-foldcross-validation method，the application for temporal cal⁃ibration was tested. The results of SSC retrieval based onhistorical baseline models are shown in Table 3.Significant improvement of RMSE and R2 in mostmodels can be obtained after the double calibration. Al⁃though the RMSE in D’Sa increases（from 0. 1218 to0. 1352 g/L）after NNC in temporal calibration，the val⁃ue decreases（from 0. 1436 to 0. 1352 g/L）compared tothe result in baseline model calibration. The R2 in Loiseldecreases（from 0. 3685 to 0. 3037），mainly because the

great error after LC cannot be well calibrated by NNC.Specifically，the complex non-monotonic Loisel modelleads to the overfitting problem in our small dataset andcauses the great error after LC. Besides，the NNC onlyhas limit calibration ability due to the small dataset andprevention of overfitting. Thus，a drop in R2 is observedin Loisel model. With a larger dataset，the NNC mayachieve better results in temporal calibration. In terms ofMAPE，the MAPE of most models decreases because theredistribution in the LC process may cause big relative er⁃rors when predicting small SSC values. Aiming at the vi⁃sualization of the NNC model，the relationships of thepredicted values and the field measurements for each

Fig. 7 The scatter diagrams（（left））between the predicted values and field measurement values and the NNC calibration curves（（right））
for D’Sa（（a）），Nechad（（b）），Ruhl（（c））and Loisel（（d））models in the application for baseline model calibration
图 7 在基线模型校正应用中的预测值与实测值散点图（左）和 NNC校正曲线（右），（a）D’Sa模型，（b）Nechad模型，（c）Ruhl模
型，（d）Loisel模型
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baseline model have been plotted in Figure 8. It can beindicated that linear errors including bias and scale canbe simply calibrated by LC while the nonlinear errors canbe further calibrated by NNC to obtain better results.
2. 4 AHSI image inversion based on NNCFrom the inverse results of the two applications，theD’Sa model of the temporal calibration with the highestaccuracy（RMSE=0. 1352 g/L，MAPE=0. 7817 and R2=0. 7155）was selected for the SSC retrieval of the entireGF-5 images. Figure 9（a）and（b）show the results ofthe SSC retrieval in the temporal calibration applicationbased on the baseline model fitting and the NNC second⁃ary calibration with the addition of LC，respectively. It isobserved that the baseline model fitted with historical da⁃ta is secondarily calibrated to match the SSC characteris⁃tics of the targeting date such as the SSC range. Someplaces with confidentially known SSC levels are used forreality check so as to further verify the retrieval accuracyin an intuitive way. The Changxing Reservoir，around31°26' N and 121°38' E，has a rather low level of sus⁃pended concentration which is in great accordance withthe inverse estimation of SSC. The turbid water quality ofthe Hangzhou Bay，around 30°44' N and 121°50' E，iswell reflected by the red region in the graph. Beizhi，around 31°47' N and 121°29' E，is also a highly turbidregion according to Gu et al.［23］，and the fact is also con⁃sistent with the retrieval results.
3 Discussion

This study shows that the great learning capability ofthe ANN can be utilized to improve the accuracy in theSSC retrieval process. As mentioned above，moderateimprovement can be observed，indicating the effective⁃ness of NNC. By employing the baseline model calibra⁃tion，all three assessment parameters in four models ob⁃tain increment in precision. By employing the temporalcalibration，RMSE and R2 in most models obtain betterresults，despite the increment in MAPE due to the sim⁃ple LC process.Generally，the ANN model requires substantial datato drive and even very complicated models can be extract⁃ed by the great learning and reasoning abilities of ANN.However，considering the limitation of the dataset size，there may be the risks of overfitting. Hence，in order toprevent the overfitting problem，several aforementionedmethods have been designed and employed. First，ourproposed NNC takes the advantage of the small size of pa⁃rameters of the simple baseline models. By using transferlearning，our NNC is first trained to learn an identity

function，which reduces the data size that ANN re⁃quires. Second，a regularization term is added in the lossfunction of ANN to test the generalization ability. Third，the best hyperparameter λ is selected to obtain the modelwith the best generalization performance. Fourth，the im⁃proved k-fold cross-validation method is used to obtainlow-variance accuracy estimation results and avoid thehigh-variance risks due to the limited dataset. In addi⁃tion，4 baseline models of different types and 3 accuracyassessment parameters were tested to ensure the reliabili⁃ty of our research.
4 Conclusion

This study shows that the great learning capability ofthe ANN can be utilized in the double calibration processto improve the accuracy of the SSC retrieval. In this pa⁃per，the proposed double calibration system is able tocorrect both linear and nonlinear errors of the baselinemodels based on ANN with a specialized regularizationterm. Our method obtained a moderate improvement ofaccuracy in both applications. For the two typical appli⁃cations including baseline model calibration and tempo⁃ral calibration，4 distinct baseline models and corre⁃sponding NNC models have been systematically investi⁃gated using the GF-5 AHSI images and the concurrentlycollected field measurements. The results show D’Samodel is of highest accuracy in both applications. By em⁃ploying the baseline model calibration，RMSE decreasedfrom 0. 1495 g/L to 0. 1436 g/L，MAPE decreased from0. 7821 to 0. 7580 and R2 increased from 0. 6805 to0. 6926，indicating NNC can compensate the inherent er⁃rors of the baseline models. After implementation of thetemporal calibration，RMSE changed from 0. 1218 g/L to0. 1352 g/L，MAPE decreased from 0. 8657 to 0. 7817and R2 increased from 0. 6688 to 0. 7155，which meansthe information from the historical field measurementscan be extracted by NNC and provide a better initial hy⁃pothesis which probably leads to better accuracy com⁃pared with the baseline model calibration. The shortcom⁃ing of this experiment is the lack of concurrent SSC fieldmeasurements. Due to the small dataset，the huge hyper⁃parameter λ was selected to prevent overfitting，whichlimited the improvement of accuracy. Thus，on the basisof this experiment，the concurrent collection process willbe optimized in the future study to obtain more data. Al⁃so，only empirical algorithms were tested in this paper.Therefore，the effect of utilization of NNC on differentmodel types can be tested for the future research.
Table 3 Comparison between baseline and NNC results in the application for temporal calibration
表3 时间校正应用中的基线和NNC结果比较

Modeling Method

D’Sa
Nechad
Ruhl
Loisel

Independent Variables（（nm））

668，549
762
762

557，489，668

Baseline

RMSE（（g/L））

0. 1218
0. 3166
0. 2993
0. 4160

MAPE

0. 8657
0. 7016
0. 5867
0. 6972

R2

0. 6688
0. 4083
0. 3978
0. 3685

NNC

RMSE（（g/L））

0. 1352
0. 1588
0. 1804
0. 3615

MAPE

0. 7817
0. 7683
0. 9947
3. 558

R2

0. 7155
0. 6670
0. 6456
0. 3037
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Fig 8 The scatter diagrams（（left））between the predicted values and field measurement values and the NNC calibration curves（（right））
for D’Sa（（a）），Nechad（（b）），Ruhl（（c））and Loisel（（d））models in the application for temporal calibration
图 8 在时间校正应用中的预测值与实测值散点图（左）和NNC校正曲线（右），（a）D’Sa模型，（b）Nechad模型，（c）Ruhl模型，（d）
Loisel模型
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