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Abstract: The suspended sediment concentration (SSC) is an extremely important property for water monitor-
ing. Since machine learning technology has been successfully applied in many domains, we combined the
strengths of empirical algorithms and the artificial neural network (ANN) to further improve remote sensing re-
trieval results. In this study, the neural network calibrator (NNC) based on ANN was proposed to secondarily
correct the empirical coarse results from empirical algorithms and generate fine results. A specialized regulariza-
tion term has been employed in order to prevent overfitting problem in case of the small dataset. Based on the
Gaofen-5 (GF-5) hyperspectral remote sensing data and the concurrently collected SSC field measurements in the
Yangtze estuarine and coastal waters, we systematically investigated 4 empirical baseline models and evaluated
the improvement of accuracy after the calibration of NNC. Two typical applications of NNC models consisting
baseline model calibration and temporal calibration have been tested on each baseline models. In both applica-
tions, results showed that the calibrated D’ Sa model is of highest accuracy. By employing the baseline model cali-
bration, the root mean square error (RMSE) decreased from 0. 1495 g/L to 0. 1436 g/L, the mean absolute per-
centage error (MAPE) decreased from 0. 7821 to 0. 7580 and the coefficient of determination (R?*) increased from
0. 6805 to 0.6926. After implementation of the temporal calibration, MAPE decreased from 0. 8657 to 0. 7817
and R’ increased from 0. 6688 to 0. 7155. Finally, the entire GF-5 hyperspectral images on target date were pro-
cessed using the NNC calibrated model with the highest accuracy. Our work provides a universal double calibra-
tion method to minimize the inherent errors of the baseline models and a moderate improvement of accuracy can
be achieved.
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Introduction

Due to the optical reflectance, scattering and ab-
sorption of different substances, distinct optical proper-
ties of the surface reflectance have the great capabilities
of extracting the information of the water quality parame-
ters™. With the advances of computer calculation and
the development of the remote sensing technology, espe-
cially spaceborne optical sensors, it is possible to
achieve both the wider spatial range and the higher preci-
sion of water quality parameters (WQPs) retrieval ™.

The suspended sediment concentration (SSC) is an
extremely important property for water monitoring, which
is the consequence of aquatic degradation and soil ero-
sion for deforestation and urbanization. The SSC is typi-
cally defined as the total concentration (g/L. or mg/L) of
both organic and inorganic matter suspended in the water
because of the turbulence”. SSC can also be denoted as
the total suspended matter (TSM) , suspended particu-
late matter (SPM) and total suspended solids (TSS) ,
etc'"". The correlation between SSC and turbidity makes
it easy to set certain landmark with known clarity in the
map to intuitively evaluate the retrieval accuracy. Ac-
cording to the historical development of retrieval algo-
rithms of the WQPs from remotely sensed data, there are
broadly three approaches: analytical, semi-analytical
and empirical approaches'™. The empirical algorithms
have been widely used because of the advantages of the
easy implementation and the requirement of less field-
work. A widespread empirical algorithm early developed
in the International Ocean-Colour Coordinating Group
(IOCCG) is the color-ratio algorithm based on the expo-
nential function and band ratio of reflectance in order to
compensate the intensity deviation of the light at different
spots'*. D’ Sa et al. presented an empirical algorithm
designed for moderately turbid waters based on the band
ratio between the wavelength 670 and 555 nm for remote
sensing reflectance (R,), which has been found highly
correlated . Nechad et al. argued that the use of a sin-
gle band algorithm can also provide accurate results with
the proper selection of the band'">'*. Chen et al. tested
various SSC retrieval models such as single band and dif-
ference of two bands based on moderate resolution imag-
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ing spectroradiometer (MODIS) in a wide-range SSC con-
centration'”. However, traditional empirical algorithms
have the limitations for using the fixed mathematical for-
mula forms, such as exponential function and band ra-
tio, and thus can be further optimized by diminishing
complex model errors.

Recently, with the improvement of computational
power and the development of machine learning technolo-
gy, rather complex WQP retrieval problems can be
solved. The artificial intelligence technology holds the
advantage of retrieving different water parameters based
on a single machine learning algorithm. Plenty of imple-
mentations of machine learning algorithms such as multi-
linear regression''”’, support vector machine'" and artifi-
cial neural network (ANN)""**" have achieved high accu-
racy in WQP inversion problems. Wei et al. employed
the least-squares support vector machine parameterized
through the particle swarm optimization algorithm for SSC
estimation based on unmanned aerial vehicle-borne hy-
perspectral images''’. Hafeez et al. evaluated the retriev-
al potential by comparing several machine learning algo-
rithms and extracted the relative variable importance
which is an indicator for further research®’. In spite of
the black-box essence and difficulty of deconstructing,
machine learning algorithms are still extensively and suc-
cessfully applied in remote sensing retrieval of WQPs.

In recent years, many new satellites equipped with
advanced imagers, which can obtain increasing spatial
coverage, spectral resolution and spectral range, have
been launched for general or specific purposes™
Gaofen-5 (GF-5) satellite equipped with 6 payloads aims
at geographic and atmospheric monitoring, which was
successfully launched on May 9, 2018 in China™ >
The Advanced Hyper Spectral Imager (AHSI) , one of
the payloads, obtains 330 high-resolution bands in the
spectral range from 400 to 2500 nm with the swath width
of 60 km, which is highly progressive in the world™".

In this study, we systematically investigated the
SSC retrieval in the Yangtze estuarine and coastal waters
by implementing several empirical baseline models based
on the GF-5 hyperspectral images and SSC field measure-
ments collected simultaneously. A neural network cali-
brator (NNC) for double calibration was proposed to com-
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bine the advantages of ANN and the traditional empirical
algorithms. This combination can compensate the inher-
ent errors of the empirical models and reduce the data
that ANN requires. In order to prevent the overfitting
problem, an identity function was pretrained and a spe-
cialized regularization term was employed. Two typical
applications of the NNC model including baseline model
calibration and temporal calibration have been investigat-
ed based on 4 baseline algorithms. With the small size of
dataset, a moderate improvement of accuracy has been
achieved in both applications. Finally, the entire hyper-
spectral images on target date were processed using the
algorithms with the highest accuracy to analyze the distri-
bution of SSC and finish the reality check. This paper
provides a universal secondary calibration method based
on ANN to minimize the inherent errors of baseline mod-
els.

1 Materials and methods

1.1 Locations of SSC measurements

The Yangtze Estuary is selected as the area to inves-
tigate SSC retrieval algorithms. The Yangtze River, the
longest river in Euro-Asian continent, rises in the Tibet-
an Plateau, flows generally 6300 km to the East China
Sea and generates the Yangtze Estuary. The prosperous
Yangtze Estuary, the geographically largest, most dense-
ly populated and industrialized area of China, plays an
important role in geochemical cycles for a considerable
amount of sediment suspended in the Yangize River. The
suspended sediment load per year from the Yangtze River
reaches approximately 480 million tons and nearly 40%
of the load is deposited in the Yangtze Estuary making it
an extremely highly turbid region™’. Besides, the Yang-
tze Estuary is characterized by the optical complexity be-
cause of the low salinity, high levels of nutrients, tidal
currents and the biogeochemical environment”,
Thus, the researches on the Yangtze coastal and estuari-
an waters are challengeable and valuable.

The Yangtze Estuary starts from Xuliujing and ends
at the East China Sea, presenting a “three-order bifurca-
tion and four outlets into the sea” pattern. The Yangtze
Estuary is firstly divided by the Chongming Island and
Hengsha Island into the North and the South Branch.
Then the South Branch is secondly separated by Changx-
ing Island and Hengsha Island into the North and South
Channel. Finally, the South Channel is split into the
North Passage and the South Passage by Jiuduansha wet-
land" ', With respect to the calibration and validation,
the field measurements were concurrently collected ac-
cording to the satellite overpassing time so as to provide a
universal evaluation of accuracy. A total number of 14
water samples consisting 4 samples from 27 March, 3
samples from 24 May and 7 samples from 31 October
2019 were taken as shown in Figure 1. The field mea-
surements collected by the buoy stations were obtained
using the optical backscattering sensors (OBS) at 10-
minute intervals and the linear interpolation was used to
estimate SSC value at the satellite overpassing time based
on the neighboring collected data. The field measure-

ments collected by ships were obtained simultaneously at
the satellite overpassing time using the weighing method
with drying and filtration"*"".
1.2 The GF-5 hyperspectral images

GF-5 satellite, launched on May 9 2018, denotes a
polar-orbiting satellite of a series of China High-resolu-
tion Earth Observation System (CHEOS) satellites of the
China National Space Administration, which has taken
an AHSI designed and developed by Shanghai Institute of
Technical Physics (SITP), Chinese Academy of Scienc-
es™. The main characteristics of the GF-5 AHSI are
shown in Table 1 according to the report from the China
Centre for Resources Satellite Data and Application.
Note that the GF-5 AHSI collects 330 spectral bands in
total from 400 to 2500 nm with a very high spectral reso-
lution (i. e., 5 and 10 nm for visible and near-infrared
(VNIR) and short-wavelength infrared (SWIR) bands,
respectively) , meanwhile covering a viewing width of 60
km with high signal-to-noise ratio (SNR). Both its view-
ing width and number of spectral bands exceed other on-
board spaceborne hyperspectral imager, such as EO-1
Hyperion and HICO of USA, HyslS of India and DESIS
of Germany'”’. In this paper, the hyperspectral images
were taken on 27 March, 24 May and 31 October 2019.
Note that 3 cloud-free hyperspectral images taken on 31
October 2019 with spatial coverage of the Yangtze estuar-
ian and coastal waters were selected for best visualization
of final results.
1.3 Hyperspectral image preprocessing

The space-borne hyperspectral images were prepro-
cessed in ENVI software as follows: orthorectification,
radiometric calibration, atmospheric correction, mask-
ing and water extraction'™. By preprocessing, digital
number (DN) values of origin images were translated to
surface reflectance.

1) Orthorectification

The GF-5 hyperspectral images contain the neces-
sary information, i. e. , the Rational Polynomial Coeffi-
cients (RPCs) , to complete the photogrammetric pro-
cessing. The ENVI RPC Orthorectification tools use RPC
information and a high-resolution digital elevation model
(DEM) to create a geometrically corrected image.

2)Radiometric calibration

The conversion from the quantized DN of raw imag-
ery into at-aperture radiance (W+m™ sr™'~um™") is a lin-
ear transformation described in Eq. (1) based on the
gain and offset coefficients from the auxiliary information
provided in GF-5 AHSI. In our experiment, the vicari-
ous calibration coefficients mentioned in " were used.

Radiance = Gain*DN + Offset . (D)

3) Atmospheric correction

The next step is atmospheric correction which re-
moves or decreases the influence of the atmospheric scat-
tering, absorption and reflection and translates the at-ap-
erture radiance to the surface reflectance signature ™.
The Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) model was used in this paper.
In this research of the Yangtze coastal and estuarine wa-
ters, the atmospheric model and aerosol model were set
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Locations of 14 SSC field measurements on March 27 (blue), May 24 (brown) and 31 October (black) 2019 near the Yangtze
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Table 1 Main parameters for GF-5 AHSI
*1 SALSEREIENTESH

Parameters Capability
Spatial Coverage 60 km
Spectral Range 400~ 2500 nm

Spectral Resolution VNIR: 5 nm, SWIR: 10 nm
Spatial Resolution 30 m

Signal to Noise 100~200

as “Mid-Latitude Summer” and “Rural”, respectively.
4)Masking and water extraction
Open water body can be identified via the Normal-
ized Difference Water Index (NDWI) method, as in ©*.

The NDWI can be calculated as follows :

Green — NIR
NDWI = Green + NIR (2

where Green and NIR represent the surface reflectance of
green and near-infrared (NIR) bands, respectively. In
our experiment, wavelengths of 895 and 565 nm were se-
lected as the NIR and green bands respectively by observ-
ing and comparing the surface reflectance curves of water
body with those of other terrain types.
1.4 Retrieval method

Based on the preprocessed AHSI data and field mea-
surements, the entire procedures of the SSC retrieval are
shown in Figure 2. In the input procedure, variables are
initialized in order to prepare the required data for the
next steps. The weights in ANN are initialized by simu-

lating the identity function as pre-training. A is a hyper-
parameter used to test the generalization ability of the
ANN model. Dataset partition is employed to be ready
for the implementation of the improved k-fold cross-vali-
dation method. The processing procedure is achieved by
two steps. First, we use empirical algorithms as baseline
models to generate the coarse results. Next, the NNC
model is employed for secondary correction to compen-
sate the non-linear components which cannot be de-
scribed by the empirical algorithms. In this step, the
NNC model takes the coarse results as inputs and outputs
the corrected fine results. Besides, an evaluation of 3 as-
sessment parameters is utilized to test the generalization
performance of trained ANN under different A. Finally,
the network parameters and hyperparameter A of the
ANN with the best generalization ability are selected.
More details are mentioned later in this section.
1.4.1 Baseline models

There are generally three approaches for quantita-
tive remote sensing of WQPs: the empirical, analytical
and semi-analytical approaches . The empirical algo-
rithms take the key advantages of easy implementation,
computational simplicity and requirement of less field-
work based merely on the simultaneous field measure-
ments and remote sensing data. These algorithms gener-
ally provide robust accuracy for the calibrated area due to
the assumptions that the inverse modeling of water and at-
mosphere remains the same throughout this region. Con-
sidering the same regional assumptions and computation-
ally consuming features held by the NNC, empirical algo-
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rithms were chosen for the basic inverse modelling. Con-
sidering the Yangtze Delta being highly turbid, accord-
ing to the research of Freeman et al. """, 4 typical algo-
rithms were employed in this paper, which took surface
reflectance as input. Besides, these baseline algorithms
utilized either single band, band ratio or band arithmetic
as the independent variable in the form of linear and non-
linear models, including linear, exponential and power
function models. The first algorithm was developed in
the northern Gulf of Mexico by D’ Sa utilizing R, for Sea-
WIFS sensor'*. Developed as a band ratio power func-
tion model based on two SeaWIFS bands (555, 670
nm), a wide range of SSC and high tolerance for different
preprocessing methods can be achieved via this model

ssc:A*(M)B . (3
R, (555)
where A and B represent the fitting coefficients.
Nechad et al. presented that the single band model
can provide a robust SSC retrieval accuracy for case II
turbid waters based on appropriate band selection around
700 nm. The recommended linear form of this algorithm

is as follows'"™:

SSC = A*R, (Best Band) + B , (4

where Best Band denotes the band selected using exhaus-
tive search method. In order to translate this algorithm
from MERIS, MODIS and SeaWIFS sensors to GF-5 AH-
SI, we tested entire 48 bands from 600 - 900 nm to lo-
cate the Best Band.

Similar to the Nechad model, Ruhl et al. derived
and tested a single band exponential algorithm measured
in the very turbid San Francisco Bay, California '

SSC — AeR*R“(BesrBand) . (5>

In this research, the algorithm was built based on
field measurements collected from 1994 to 1998 with
SSC values ranging from 0 to over 400 mg/L.. This algo-
rithm obtained R*=0. 59.

Considering the model developed by Loisel et al. in
the highly turbid Mekong River Delta with SSC maximum
values over 5000 mg/L, three bands (489, 557 and 668

nm) are utilized here to adapt to the GF-5 AHSI™';
A+ B(R, (557) + R, (668)) - C(R, (489)/R, (557))
$§C = 10777 . (6)

where A, B and C are the fitting parameters.
1.4.2 Neural network calibrator

Our intuition of designing NNC is combining the
complementary advantages between empirical models
and ANN. Compared to empirical models which lack cer-
tain complex nonlinear features, NNC obtains the great
capability of the ANN in extracting potential features and
generating highly complex nonlinear functions. Howev-
er, the ANN model requires a large dataset to prevent
overfitting problem, which is hard to be satisfied in the
field of remote sensing. In order to prevent the overfitting
problem, the simple empirical models with just a few pa-
rameters can help ANN to reduce the required parameter
number. By using transfer learning, our ANN is first
trained to learn an identity function, aiming at learning
the hypothesis of baseline models which require fewer pa-
rameters. Following this intuition, we proposed the NNC
which takes the coarse results of baseline models as input
and generate the calibrated fine results.

Usually, the ANN model consists of a collection of
the connected neurons (or nodes) and corresponding
weights assigned with links in the multilayer structure
which typically includes an input layer, one or more hid-
den layers and an output layer. In this work, we aim to
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secondarily calibrate the baseline SSC results and gener-
ate more precise results. In detail, the input of ANN is
one baseline retrieval result and the output takes the cor-
responding field measurement as the label. Thus, a clas-
sical three-layer feed forward network with one node in
the input layer and one node in the output layer was em-
ployed to update each input to a better output. Further,
the number of nodes in the hidden layer should be small
in order to reduce network parameters and prevent the
overfitting problem. In our experiment, a hidden layer
containing 10 nodes was selected for the small size of pa-
rameters and enough nonlinear expression ability. Final-
ly, a sigmoid function was added after the output layer
for activation. Below, we formulate the general form of
ANN. In the feed forward process of prediction, the node
vector of the former layer is multiplied with correspond-
ing network parameters, added to a bias and then activat-
ed by the sigmoid function to obtain the node vector of
the latter layer, as follows:

g(z) = 1/(1 - ¢*) (D
oty = g( g 4 6(0“) , (8)
ha(X) — a(3) , (9)

where g(z) is the sigmoid function, a"is the activated
node vector of layer I, 8" is the network parameter ma-
trix from layer [ to (I+1), 6} is a bias value from layer [
to ({+1) and h,(x) is the hypothesis value of the output
layer with x being the input value. Specifically, given S,
nodes in the layer I, the shape of a" is 1 X S, and the
shape of 0" is S, X S, ..

The cost function (or loss) describes the error be-
tween the prediction values and the ground truth. The
back propagation (BP) algorithm has been employed to
iteratively minimize the cost function and complete the
training process. Furthermore, we developed a distinct
cost function with the purpose of optimizing the baseline
model accuracy. The basic cost function is shown in
Eq. (10).

Cost Function =

N z[ log( ))) - (1 - y(i))log(l - ha(x”)))}

, (10)

where N represents the number of training data, h, is the
hypothesis values in the output layer, x is the baseline
predictions in the input layer and y is the values of the
field measurements. The regularization term is often
used to penalize network parameters and improve the gen-
eralization ability of the ANN model. Here, a special-

ized regularization term is added to the cost function :
1S+l

NEZZ( i /)7)zrztl) ’ (11)

I=1j=1p

Cost Function + =

where A is the regularization hyperparameter controlling
the degree of penalty, L is the layer number of the input
and hidden layers, S, is the number of nodes in the layer
[ and O!) represents the network parameter linking the

layer [ node p to the layer (I+1) node j. An extra network
based on identity function, i. e. inputs equal to outputs,

was pre-trained to obtain the initial parameters @,
which provide the initial hypothesis based on baseline
models to guarantee accuracy improvement after the sec-
ondary calibration.

A systematical investigation of two typical applica-
tions of NNC including baseline model calibration and
temporal calibration has been presented. As for the base-
line model calibration, aiming to compensate the inher-
ent errors of the baseline models, the field measurements
from 31 October 2019 were used both for fitting the base-
line model and the secondary calibration of the NNC mod-
el. As for the temporal calibration, the purposes are the
specialization of the parameterized historical model to
adapt to the specific new field measurement data and the
correction of inherent baseline errors. In this case, the
baseline model was fitted as the historical model based
on the in situ data from 27 March and 24 May 2019.
Then, an extra linear calibration (LC) model was fitted
to assign prediction results of the historical model to re-
sults on the specific date by using the data from 31 Octo-
ber 2019. Finally, the NNC model was trained based on
the data from 31 October 2019 to secondarily calibrate
the historical model to adapt to the specific date.

1. 4.3 Statistical analysis

In order to gain better understanding of the various
models, the accuracy for calibration and validation can
be statistically evaluated by the three indices, root mean
square error (RMSE) , the mean absolute percentage er-
ror (MAPE) and the coefficient of determination (R?).
RMSE and MAPE are defined as follows :

N

RMSE = /jl\[z(xmi - mei)z ’

i=1

(12)

MAPE = — z‘ g = Kt ,

Vlm i

(13)

where N is the total number of samples, X, ; is the esti-
mated value and X,,,; is the field measurement value.
The RMSE maintains the same unit as the in situ data
and thus is intuitive and representative of the size of er-
ror. Besides, because of the disproportionate weight giv-
en by the squaring process, the RMSE is sensitive to oc-
casional large errors and performs well in the situation
with no outliers. As expressed in relative meaning, this
statistical measurement can be compared widely across
distinct data ranges. It is notable that the MAPE puts a
heavy penalty on errors of small SSC values due to the ra-
tio form, which leads to a significant complement of the
RMSE. R?is defined as:
) RSS SR

~ SST - SST ’
where SSR is the sum of squares for regression, RSS is
the residual sum of squares, SST is the total sum of
squares and R’ is defined as the ratio of SSR to SST. R’
generally provides a replicated percent of the model for
fitting the observation outcomes. With respect to the
small size of in situ dataset, an improved k-fold cross val-
idation method has been designed and implemented to
precisely calculate 3 accuracy assessment parameters.

(14)
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The method can be described in three steps.

(1) The first step is to select a reasonable number
of training data. Mention that the number should be
greater than the free degree of baseline models and less
than the total number of the dataset minus 3 to obtain the
valid R>. Here the size of the training set is selected as 4.

(2) The next step is to find out all the possible situa-
tions via combination to pick training data from the total
dataset and the number of situations here is C; = 35.

(3) After completing the division to different train-
ing and validation groups, each statistical parameter for
validation of the groups can be calculated and the aver-
age is taken as the final evaluated accuracy.

It is indicated that every possible combination of the
training and test data groups can account for the final av-
erage accuracy. However, due to fast growing rate of fac-
torial function, this improved k-fold cross validation

method can only be considered in the small size of datas-
et.

2 Results

2.1 Field measurements and spectral reflectance
In our research, field measurements of SSC have
been collected concurrently to the GF-5 overpass based
on the aforementioned method. The total 14 in situ SSC
data measured on buoy stations and ships using drying
and filtration process and optical backscattering method
respectively was statistically analyzed in a line chart as
shown in Figure 3. The SSC values of samples 1, 2, 5
and 7 are high over 0. 35 g/L and the sample 7 achieves
the highest concentration of 0.76 g/l.. The higher SSC

values on 31 October 2019 is probably caused by the
nearly highest tide of the day according to the official tide
table. The solid yellow line indicates the trend of sorted
7 in situ data on 31 October 2019. Note that the 7 field
measurements are distributed relatively evenly in the spa-
tial domain and the SSC measurements spread relatively
equally ranging from 0.026 to 0.76 g/l.. Hence, the
field measured data of 31 October 2019 has the capabili-
ty of representing the real SSC features in a wide range in
spite of low number, which can provide more information
for ANN to learn from, comparing the highly centralized
dataset of the same size.

The preprocessed surface reflectance curves extract-
ed in the highly likely estuarine spots of low, middle and
high SSC values on each individual date are shown in Fig-
ure 4 (a), (b) and (c¢). Besides, some preprocessed
surface reflectance curves of typical ground objects on 31
October 2019 are depicted for comparison in Figure 4
(d). Notice that in the radiometric calibration process vi-

carious and onboard parameters are applied for the imag-
es of 31 October 2019 and the other dates, respectively.

In terms of low and middle turbid waters, a similar bi-
modal reflectance shape can be concluded through all 3
graphs. The two distinct spectral peaks appear in the vi-
cinities of 580 and 820 nm. The first peak is jointly
caused by the strong absorptive effect by CDOM and phy-
toplankton at shorter wavelengths and the exponential in-

creasing absorption by water molecules™*. The second
peak is generated for the combined effect of the high
amount of suspended sediments and the strong absorption

of water molecules between 700 ~ 750 nm, which is high-

08 r |
0.7 /"I“.
I
- i / ! I'.
5061 A it
[ [\ | III
3 [\ u,
fo5¢f E! \ / {
| 1 1
% "\ II' |I II|
»n 045 | / II| / II|
E b "\ » I'l | \
%ol \ /! II" / 'u
g I\I II|
= \

o
P
T

o
e
T
'Y
s
\\
\
\
\
T —

Origin Data
Sorted Data

PN / N

6 7 8
Fig. 3

1 1 ]
9 10 11 12 13 14

Number of Samples

Line chart of total in situ SSC data. The number 1~7, 8~10, 11~14 samples were measured on 31 October, 24 May and 27
March 2019, separately. A separation line (purple) is plotted to highlight the water samples 1~7 used for the final retrieval. The blue to
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ly correlated to SSC. As the SSC increases, a new peak
near 681 nm emerges due to phytoplankton and the mutu-
al cancellation of the high reflectance of suspended parti-
cles and the strong absorption of water molecules™”” *".

According to documented locations of the 7 water
samples on 31 October 2019, the preprocessed surface
reflectance curves of GF-5 images are shown in Figure 5.
The similar bimodal spectral characteristics and the gen-
eral trend of increasing reflectance with the increment of
suspended particles at approximate 820 nm can also be
obtained.
2.2 Retrieval results of baseline model correction

In normal case that only in situ data on targeting
date is available, NNC can be easily implemented to im-
prove the accuracy of baseline models through compen-
sating the inherent errors of the baseline models. By se-
lecting the in situ data of 31 October 2019 as the whole
dataset and using the improved k-fold cross validation
method with 4 as the size of the training dataset, the SSC
retrieval results of the baseline models and NNC are
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shown in the Table 2. Note that the band selection of the
baseline Nechad and Ruhl models was accomplished by
exhaustive search.

From the results, it is noticeable that the accuracy
of the baseline model has been enhanced moderately for
all RMSE, MAPE and R* after the double calibration of
NNC. Because of the high sensitivity of RMSE and
MAPE in terms of the high and low SSC values respec-
tively, the calibrated results perform better in both SSC
ranges, which indicates the effectiveness of our proposed
NNC method. The calibrated D’ Sa model achieved the
highest accuracy. After calibration, RMSE decreased
from 0.1495 to 0.1436 g/l., MAPE decreased from
0.7821 to 0.7580 and R’ increased from 0.6805 to
0. 6926. Besides, the highest improvement of accuracy
was achieved by the Loisel model which had the worst
performance in our limited dataset. After calibration,
RMSE decreased by 19. 2% from 0. 4941 to 0. 3993 g/L,
MAPE decreased from 2.5812 to 2.1995 and R® in-
creased from 0. 2914 to 0. 3992.
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Fig. 4 Spectra of the surface reflectance in the research region on 27 March (a) 24 May (b) and 31 October (¢) 2019. The dotted,
dashed and solid lines represent the low, middle and high SSC values, respectively (d) some surface reflectance spectra extracted from

different typical ground objects on 31 October 2019
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Table 2 Comparison between baseline and NNC results in the application for baseline model calibration.

x2 ELEARENARRHELZIINNCERILE
Baseline NNC
Modeling Method  Independent Variables (nm) 5 2
RMSE (g/L) MAPE R RMSE (g/L) MAPE R
D’Sa 668,549 0. 1495 0.7821 0. 6805 0. 1436 0. 7580 0. 6926
Nechad 758 0. 1587 0. 8049 0.6729 0. 1567 0.7657 0.6772
Ruhl 745 0.2104 1. 1142 0. 6039 0. 1939 0. 9849 0. 6336
Loisel 557, 489, 668 0.4941 2.5812 0.2914 0.3993 2. 1995 0.3992
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Fig. 5 The 7 examples of preprocessed surface reflectance spec-
tra for different SSCs measured on 31 October 2019
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In order to overcome the problem of overfitting, a
wide range of hyperparameter A in the regularization term
has been employed to test the generalization ability of the
NNC model and thus the optimum A of the best general-
ization performance of NNC is selected. The dependence
relationships of A and corresponding RMSE, MAPE, R’
are displayed in the Figure 6. In general, the curves de-
crease at the beginning and then increase with the in-

creasing of A for RMSE and MAPE and an inverse trend
is for R>. The up-down shapes of the accuracy are associ-
ated with underfitting and overfitting problems. Hence,
the A corresponding to the general extremum of the
curves is chosen to gain the optimum generalization per-
formance. Note that the smaller hyperparameters always
lead to a better improvement after the secondary calibra-
tion of NNC. However, rather big hyperparameters may
be selected due to the small size of the training dataset so
as to prevent overfitting. Besides, in order to visualize
the NNC model, the relationships of the predicted values
and the field measurements have been plotted as shown
in Figure 7. The nonlinear errors of the baseline models
can be visualized according to the NNC curves which
may be clues for modifying the original baseline models.
In spite of the slight difference between the NNC curve
and the initial identity function due to the huge regular-
ization hyperparameter used for preventing overfitling, a
clearly moderate improvement can be available which is
the evidence of the effectiveness of the application for the
baseline model calibration.
2.3 Retrieval results of temporal calibration

When the baseline models calibrated and validated
based on extra historical data are available, the NNC
model can be used to adjust the existing model to adapt to
specific date with an extra LC step. Our intuitive of the
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temporal calibration is that adding extra historical infor-
mation may generate better results. By selecting 4 as the
size of the training set and using the improved k-fold
cross-validation method, the application for temporal cal-
ibration was tested. The results of SSC retrieval based on
historical baseline models are shown in Table 3.
Significant improvement of RMSE and R2 in most
models can be obtained after the double calibration. Al-
though the RMSE in D’ Sa increases (from 0. 1218 to
0. 1352 g/L.) after NNC in temporal calibration, the val-
ue decreases (from 0. 1436 to 0. 1352 ¢/L.) compared to
the result in baseline model calibration. The R2 in Loisel

decreases (from 0. 3685 to 0. 3037), mainly because the

T S LR AT RYAG T )37 FH o 3 1900 45 S (E AR SE (Z2) FINNC AL IE R (£7), (a)D’ Safii#!, (b)Nechad 5%, (¢)Ruhl 45

great error after LC cannot be well calibrated by NNC.
Specifically, the complex non-monotonic Loisel model
leads to the overfitting problem in our small dataset and
causes the great error after LC. Besides, the NNC only
has limit calibration ability due to the small dataset and
prevention of overfitting. Thus, a drop in R2 is observed
in Loisel model. With a larger dataset, the NNC may
achieve better results in temporal calibration. In terms of
MAPE, the MAPE of most models decreases because the
redistribution in the LC process may cause big relative er-
rors when predicting small SSC values. Aiming at the vi-
sualization of the NNC model, the relationships of the
predicted values and the field measurements for each
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baseline model have been plotted in Figure 8. It can be
indicated that linear errors including bias and scale can
be simply calibrated by LC while the nonlinear errors can
be further calibrated by NNC to obtain better results.
2.4 AHSI image inversion based on NNC

From the inverse results of the two applications, the
D’ Sa model of the temporal calibration with the highest
accuracy (RMSE=0. 1352 g/l., MAPE=0. 7817 and R’=
0.7155) was selected for the SSC retrieval of the entire
GF-5 images. Figure 9 (a) and (b) show the results of
the SSC retrieval in the temporal calibration application
based on the baseline model fitting and the NNC second-
ary calibration with the addition of LC, respectively. It is
observed that the baseline model fitted with historical da-
ta is secondarily calibrated to match the SSC characteris-
tics of the targeting date such as the SSC range. Some
places with confidentially known SSC levels are used for
reality check so as to further verify the retrieval accuracy
in an intuitive way. The Changxing Reservoir, around
31°26’ N and 121°38’ E, has a rather low level of sus-
pended concentration which is in great accordance with
the inverse estimation of SSC. The turbid water quality of
the Hangzhou Bay, around 30°44’ N and 121°50" E, is
well reflected by the red region in the graph. Beizhi,
around 31°47" N and 121°29" E, is also a highly turbid
region according to Gu et al. *', and the fact is also con-
sistent with the retrieval results.

3 Discussion

This study shows that the great learning capability of
the ANN can be utilized to improve the accuracy in the
SSC retrieval process. As mentioned above, moderate
improvement can be observed, indicating the effective-
ness of NNC. By employing the baseline model calibra-
tion, all three assessment parameters in four models ob-
tain increment in precision. By employing the temporal
calibration, RMSE and R* in most models obtain better
results, despite the increment in MAPE due to the sim-
ple LC process.

Generally, the ANN model requires substantial data
to drive and even very complicated models can be extract-
ed by the great learning and reasoning abilities of ANN.
However, considering the limitation of the dataset size,
there may be the risks of overfitting. Hence, in order to
prevent the overfitting problem, several aforementioned
methods have been designed and employed. First, our
proposed NNC takes the advantage of the small size of pa-
rameters of the simple baseline models. By using transfer
learning, our NNC is first trained to learn an identity

function, which reduces the data size that ANN re-
quires. Second, a regularization term is added in the loss
function of ANN to test the generalization ability. Third,
the best hyperparameter A is selected to obtain the model
with the best generalization performance. Fourth, the im-
proved k-fold cross-validation method is used to obtain
low-variance accuracy estimation results and avoid the
high-variance risks due to the limited dataset. In addi-
tion, 4 baseline models of different types and 3 accuracy
assessment parameters were tested to ensure the reliabili-
ty of our research.

4 Conclusion

This study shows that the great learning capability of
the ANN can be utilized in the double calibration process
to improve the accuracy of the SSC retrieval. In this pa-
per, the proposed double calibration system is able to
correct both linear and nonlinear errors of the baseline
models based on ANN with a specialized regularization
term. Our method obtained a moderate improvement of
accuracy in both applications. For the two typical appli-
cations including baseline model calibration and tempo-
ral calibration, 4 distinct baseline models and corre-
sponding NNC models have been systematically investi-
gated using the GF-5 AHSI images and the concurrently
collected field measurements. The results show D’ Sa
model is of highest accuracy in both applications. By em-
ploying the baseline model calibration, RMSE decreased
from 0. 1495 ¢/L. to 0. 1436 g/L., MAPE decreased from
0.7821 to 0.7580 and R’ increased from 0.6805 to
0. 6926, indicating NNC can compensate the inherent er-
rors of the baseline models. After implementation of the
temporal calibration, RMSE changed from 0. 1218 g/L to
0. 1352 g/l., MAPE decreased from 0. 8657 to 0. 7817
and R’ increased from 0. 6688 to 0. 7155, which means
the information from the historical field measurements
can be extracted by NNC and provide a better initial hy-
pothesis which probably leads to better accuracy com-
pared with the baseline model calibration. The shortcom-
ing of this experiment is the lack of concurrent SSC field
measurements. Due to the small dataset, the huge hyper-
parameter N was selected to prevent overfitting, which
limited the improvement of accuracy. Thus, on the basis
of this experiment, the concurrent collection process will
be optimized in the future study to obtain more data. Al-
so, only empirical algorithms were tested in this paper.
Therefore, the effect of utilization of NNC on different
model types can be tested for the future research.

Table 3 Comparison between baseline and NNC results in the application for temporal calibration

F3 HEARKENARHELZIMNNCERIEER

Baseline NNC
Modeling Method  Independent Variables (nm) 2 2
RMSE (g/L) MAPE R RMSE (/L) MAPE R
D’Sa 668, 549 0. 1218 0. 8657 0. 6688 0. 1352 0.7817 0.7155
Nechad 762 0.3166 0.7016 0. 4083 0. 1588 0. 7683 0. 6670
Ruhl 762 0.2993 0. 5867 0.3978 0. 1804 0. 9947 0. 6456
Loisel 557, 489, 668 0.4160 0. 6972 0. 3685 0.3615 3.558 0.3037
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Date: 31 October 2019
Data Source: GFS - AHSI
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Fig. 9 SSC retrieval results of the baseline model (a) and NNC double calibration (b) using the D’ Sa model in the application of tem-
poral calibration based on the GF-5 images in the Yangtze estuarine and coastal waters on 31 October 2019. For result comparison, the
magnified images of the region of interest (ROI) labelled in the red area are provided in the top left of each picture. The green star and
pink diamond denote the samples with 0. 14 and 0. 63 g/L SSC values, respectively
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