55 40 B3 1 49] N 5 2 K I R Vol. 40, No. 1
2021 4F 2 /] J. Infrared Millim. Waves February, 2021

XEHS: 1001-9014(2021)01-0056-08 DOI:10. 11972/j. issn. 1001-9014. 2021. 01. 010

A novel interpolation-based subpixel mapping for hyperspectral image by
using pansharpening
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Abstract; In this paper, a novel interpolation-based subpixel mapping (ISPM) for hyperspectral image by using
pansharpening (PAN-ISPM) is proposed. In the proposed method, a novel processing path is added into the exist-
ing processing path of ISPM. Firstly, the original coarse hyperspectral image is improved by pansharpening tech-
nique in the novel processing path, and the novel fine fraction images are derived by unmixing the improved im-
age. Secondly, the novel fine fraction images from the novel path and the existing fine fraction images from the
existing path are integrated to produce the finer fraction images with more spatial-spectral information. Finally,
according to the predicted values from the finer fraction images, class labels are allocated into subpixel to obtain
the final mapping result. Experimental results show that the proposed method produces the higher mapping accura-
cy than the existing ISPM methods.

Key words: hyperspectral image, subpixel mapping, pansharpening technique, spatial-spectral information
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Introduction

Due to limitation of hardware and complexity of envi-
ronment, hyperspectral image always contains lots of
mixed pixels, resulting in the inaccurate land cover class
mapping information'"’. Subpixel mapping (SPM) ' can
explore the spatial distribution information of the land
cover class at subpixel scale. In SPM, a mixed pixel is
changed into S X S subpixels by the zoom factor S, class
labels are assigned to subpixel to achieve the mapping re-
sults. SPM transforms the fraction images (spectral un-
mixing results of hyperspectral image) to a hard classifi-
cation image *.

There are two main SPM types: initialization then
optimization type and soft then hard type*. SPM based
on pixel swapping”’', perimeter minimization'® , value of
neighbouring'” and Moran’s index® all belong to the ini-
tialization then optimization type. In this type, the class
labels are first randomly assigned to subpixel. The loca-
tion of subpixel is then gradually transformed by optimiza-
tion algorithm. Simulating annealing, particle swarm,
and genetic algorithm " '*" are selected as optimization al-
gorithm for this type. However, this type often requires a
lot of computation time due to its complex physical struc-
ture. The more popular type is soft then hard type. Soft
then hard type mainly contains back propagation neural
network " 2" spatial attraction model ™" | indicator
cokriging"” "™, Hopfield neural network" *".

In addition, the interpolation-based subpixel map-
ping (ISPM) has been an important method of soft then
hard type due to its simple physical meaning. The exist-
ing ISPM method basically contains two processing
steps'”'': 1) interpolation and 2) class allocation. First-
ly, the coarse fraction images are utilized to produce the
fine fraction images with the predicted values (between
0 and 1) of all land cover classes for all subpixels by in-
terpolation method. Then class allocation method is
used to assign class labels to subpixel, producing the fi-
nal mapping result. In particular, when selecting the bi-
linear interpolation (BI) or bicubic interpolation (BIC)
as interpolation method, the mapping result can be very
quickly achieved * "', However, due to the coarse
resolution of the original image , the fraction images can-
not pick up the full spatial-spectral information of the

original image , the mapping result will be affected.

In this paper, using pansharpening technique im-
proves interpolation-based subpixel mapping (PAN-
ISPM) is proposed. The original coarse remote sensing
image is first fused with the high resolution panchromat-
ic image from the same area by pansharpening tech-
nique ' in a novel processing path, and the improved
image is unmixed to obtain the novel fine fraction imag-
es. The finer fraction images with more spatial-spectral
information are then derived by integrating the two kinds
of the fine fraction images from the novel path and the
existing path. Finally, the predicted values from the fin-
er fraction images are utilized to allocate hard class la-
bels to all subpixels to achieve mapping result. The pro-
posed method realizes that the more spatial-spectral in-
formation of the original image is supplied. Experimen-
tal results show that the proposed PAN-ISPM can obtain
the better mapping result than the existing ISPM meth-
ods.

1 Method
1.1 ISPM model

Suppose S is the zoom factor, the spectral unmixing
results of the original coarse remote sensing image are K
(K is the number of land cover classes) coarse fraction
images L, (k=1, 2, ,K), and each mixed pixel is divid-
ed into S X S subpixels. Suppose L, (P,) is the fraction of
the kth class for pixel P, (J=1,2,--, M, M is the num-
ber of pixels) and HA]( /) is the predicted value for the
kth class at subpixel p, (j=1, 2,0, MS*, MS? is the
number of subpixels ).

As shown in Fig. 1, taking the fraction images L, as
inputs, the interpolation method is utilized to produce
the fine fraction images, each of which is composed of
MS’ predicted values H| (pj). Constraints from class frac-
tions should meet the formula as follow :

N,(P,) = Round (L,(P,) X S?) , (D)

where N, (P,) is the number of subpixels for the kih
class, Round(®) is a function that takes the integer near-
estto L, (P,) x S

Finally, class allocation method is utilized to allo-

o Coarse fraction
Original images
coarse image M>N
Spectral
unmixing Interpolation
. Scale S
[]
Fig. 1 The flowchart of ISPM
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cate the class labels to all subpixels according to the pre-
dicted values.
1.2 PAN-ISPM model

As shown in Fig. 1, we can find that the existing
ISPM method is implemented in the coarse fraction imag-
es derived from the spectral unmixing. However, due to
the coarse resolution of the original image, the spatial-
spectral information of the original image is not fully uti-
lized. To solve this problem, the PAN-ISPM is pro-
posed. The flowchart of PAN-ISPM is shown in Fig. 2.

Firstly, the resolution of the original image is im-
proved by pansharpening technique in a novel processing
path. The main purpose of this paper is to improve the
existing ISPM model by the new processing path. Pan-
sharpening technique is just a tool to get new processing
path. Therefore, we only consider the role of the new pro-
cessing path. Due to effectively rendering spatial details
and fast implementation, principal component analysis
(PCA) is selected as the pansharpening method here.
Other more effective pansharpening methods can also be
used in the new path, but it is beyond the scope of this
article. The novel fine fraction images with predicted val-
ues H} (pj)are derived by unmixing the improved image.

Secondly, the finer fraction images with the predict-
ed values F, (pj) are obtained by integrating the novel

fine fraction images from the novel processing path and
the existing fine fraction images from the existing process-
ing path by the appropriate parameter . Due to its sim-
ple physical meaning, bilinear interpolation ' is select-
ed as the interpolation method in the existing processing
path.

The formula of integrating is given as:
Fi(p)=(1-0)H (p)+0Hp) . (2)

Finally, class allocation method is utilized to obtain
the mapping result according to the predicted values

F, (pj)from the finer fraction images. Linear optimiza-

tion ™’ is employed as class allocation method here.

Since the resolution of the original coarse image is
improved by pansharpening technique, the more spatial-
spectral information is supplied to improve the final map-
ping result.

2 Experiment

Five ISPM methods are tested and compared: bilin-
ear interpolation (BI) ', bicubic interpolation (BIC)
#1 spatial-spectral bilinear interpolation (SS-BI) """,
hybrid interpolation based on parallel paths (HIPP) """,
and the proposed PAN-ISPM. The accuracy of mapping
result is evaluated quantitatively by the percentage of cor-
rectly classified pixels (PCC) and Kappa coefficient
(Kappa)'. All experiments are tested on a Pentium (R)
Dual-core Processor (2.20 GHz) with MATLAB R2018
version.

2.1 Simulated Data

The original fine remote sensing image is downsam-
pled by S X S low pass filter to produce the simulated
coarse image for quantitative assessment. Since the land
cover classes at the subpixel level are known in the
downsampled case, we can facilitate direct evaluation of
the impact of image registration error on the technique.
The original fine hyperspectral image performed on an ur-
ban site of the airborne HYDICE is from the mall in
Washington DC. As shown in Fig. 3(a), the tested re-
gion is with 240%X240 pixels and 191 spectral bands. As
shown in Fig. 3(b), the coarse image is generated by de-
grading the fine data by S = 2.

To avoid the effect of errors caused by the acquisi-
tion of the panchromatic image, only considering the ef-
fect of pansharpening technique, the spectral response of
the IKONOS satellite is utilized in the original remote
sensing image to create appropriate synthetic panchromat-
ic image ~". The panchromatic image is shown in Fig. 3
(¢). As shown in Fig. 3(d), the pansharpening result is
close to the original fine image. The appropriate parame-
ter 0 is selected as 0. 5.

As shown in Fig. 4(a), the reference image is ob-
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Fig. 2 The flowchart of proposed PAN-ISPM
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Fig.3 (a) False color image of Washington DC (bands 65, 52, and 36 for red, green, and blue, respectively). (b) Coarse image (S = 2). (c)

Panchromatic image. (d) Pansharpening result.

Fl3  (a) 40T DC B S B A -G (I BE 65,52, FI 36 X W 4L, 44 A ) (b) MUK E12(S=2) (c) e lE% . (d) 4 Bifthss

tained from the Fig. 3 (a) by classification method, in-
cluding shadow, water, road, tree, grass, roof and
trail. The mapping results of the five methods are shown
in Figs. 4(b)-(f). A visual comparison of the results sug-
gests that the proposed PAN-ISPM model is closer to the
reference map due to utilizing more spatial-spectral infor-
mation.

Five ISPM methods are quantitatively evaluated by
the classification accuracy of each class, PCC and Kap-

pa. Checking the Table 1, the accuracy of PAN-ISPM is

superior to the existing ISPM methods. With respect to
the overall accuracy, PAN-ISPM increases the PCC by
around 5. 6% when compared with HIPP. PAN-ISPM ob-
tains the highest Kappa of 0. 842 6.

To evaluate the effect of the zoom factor S on the per-
formance of the results, the five methods are tested for
the two other zoom factors of 4 and 6. The PCC and Kap-
pa of the five methods for all three zoom factors are shown
in Figs. 5(a)-(b). We can note that as S increases, the
PCC and the Kappa of the five methods decrease. But

mm shadow mm water B road B tree B grass CJ roof CJ trail

Fig.4 (a) Reference image, (b) BI, (c) BIC, (d) SS-BI, (e) HIPP, (f) PAN-ISPM

K4 (a) Z2%E%, (b) BL () BIC, (d) SS-BL, (e) HIPP, (f) PAN-ISPM
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consistent with the result presented in Table 1, the pro- Table 1 Accuracy ew:ah}?tion of the five methods.
posed PAN-ISPM produces the higher PCC and Kappa £1_AMAENEETHN
PAN-

than the other four methods. Class BI BIC SS—BI HIPP
2.2 Real data ISPM

To better demonstrate the effectiveness of the pro- Shadow ~ 73.44%  75.03%  81.62%  82.83%  86.28%
posed PAN-ISPM, a real data set is used in experiment Water  85.56%  88.97%  94.45%  94.73%  95.03%
2. A 30-m hyperspectral image is captured by the Hyper- Road  70.55%  72.74%  76.29%  79.10%  81. 16%

ion satellite over Rome, Italy. As shown in Fig. 6(a),
the tested region is with 300160 pixels and 198 bands.
As shown in Fig. 6(b), the 15-m panchromatic image is
obtained from the Landsat 8 panchromatic band over the

Tree 72.45%  75.45%  76.61%  78.64%  79.14%
Grass 74.70%  78.60%  82.74%  83.93%  86.60%
Roof 70.67%  72.98%  77.18%  78.56%  80.02%

same area. This corresponds to the scale S = 2 between Trail — 73.88%  75.58%  79.08%  82.53%  84.01%
the original coarse remote sensing and the panchromatic PCC  76.82%  77.47%  80.72%  81.54%  87.18%
image. The pansharpening result is shown in Fig. 6(c). Kappa  0.7356  0.7429  0.7772  0.8055  0.8426

The appropriate parameter 6 is selected as 0. 6.
As shown in Fig. 7 (a) , the reference image in-
cludes vegetation, soil, built-up, and water. Figs. 7

(b)-(f) show the ISPM results for the five methods. In

PCC (%)

S=2 S=4 S=6 S=2 S=4 S=6
I 5 Bl sic Il ss-5 I Hire Bl PAN-ISPM N ) I 5ic M ss-51 [0 Hipp I PAN-ISPM
(a) (b)

Fig.5 (a) PCC (%) of the five methods in relation to zoom factor S, (b) Kappa of the five methods in relation to zoom factor S.
ElS  (a) TR 7k 5458 T SHISEH PCC (%), (b) TR ik T 547 F S #5614 Kappa.

(b) (¢c)

Fig.6 (a) False color image of Rome (bands 150, 10, and 24 for red, green, and blue, respectively), (b) Panchromatic image, (c) Pan-
sharpening result.

El6 (a) % R M AR B 150,10, F124 XEW L, 4611, (b) 2 AEIE, (o) 2B ka3 .
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Figs. 7(b)-(e), there are many speckle artifacts and dis-
connected holes in the land cover classes. The proposed
PAN-ISPM produces more continuous and smoother land
cover classes in Fig. 7 (f). Because more spatial-spec-
tral information is utilized, the mapping result of PAN-
ISPM is closer to the reference image. Table 2 lists the
accuracy of each class (%), PCC (%), and Kappa of
the five methods. Similar to the previous experimental re-
sults in experiment 1, the PAN-ISPM outperforms the
other four ISPM methods.
2.3 Discussion

First, the weight parameter 6 is introduced to bal-

ance the influence of H| (pj) and H,f(pj) on the PAN-

ISPM. Here we choose the appropriate parameter value
through multiple tests. Experiment 1 and 2 are repeated
to evaluate the PCC (%) for ten combinations of 0 in the
range of [0, 0.9] at an interval of 0. 1 in order to deter-

Table 2 Accuracy evaluation of the five methods.

x2 AMAEMEETR.

Class BI BIC ssB1 mwp N

ISPM
Vegetation  60.08%  61.96%  66.56%  74.50%  75.93%
Soil 60.22% 61.43%  64.93%  65.80% 71.78%
Builli-up  81.32%  82.42%  83.97%  84.99%  87.09%
Water  37.18%  44.10%  49.49%  54.36%  61.03%
pPCC 70.62%  72.06%  74.89% 77.55%  80.03%
Kappa  0.5877 0.5985 0.6164 0.6399 0.6736

mine the most suitable value of . As shown in Fig. 8§, it
can be seen that the most appropriate 6 value of Experi-
ments 1 and 2 are 0.5 and 0. 6, respectively, the most
appropriate value is the one at which the PCC (%) is the

[} Vegetation [ Soil

Hm \Water

] Built-up

Fig.7 (a) Reference image, (b) BI, (c) BIC, (d) SS-BI, (e) HIPP, (f) PAN-ISPM
K7 (a) Z%E L, (b) Bl (c) BIC, (d) SS-BI, (¢) HIPP, (f) PAN-ISPM
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highest.

Second, the computing time is an important index to
estimate the performance of ISPM methods. The comput-
ing time of five ISPM methods in experiment 1 and 2 is
shown in Fig. 9. Because the PAN-ISPM includes pro-
cessing step of pansharpening, the proposed method is
complex and time consuming compared to the existing
ISPM methods. This is the cost of obtaining higher map-
ping precision.

Finally, the performance of PAN-ISPM depends on
pansharpening technique. Therefore, it is necessary to
test the effects of different pansharpening methods on the
performance of the proposed method. The band-depen-
dent spatial detail (BDSD) ™" is selected as another pan-
sharpening method to compare the previous PCA in the
experiment 1 and 2. Fig. 10 show the PCC (%) of PAN-
ISPM result in relation to two pansharpening methods.
As shown in Fig. 10, since BDSD is more effective than
PCA, the PCC (%) in BDSD-based PAN-ISPM is higher
than that in PCA-based PAN-ISPM. Hence, the more ef-
fective pansharpening method can obtain the better map-
ping result.

951

90

PCC (%)

L : : L L :
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
2]

[% Experiment 1 —K— Experiment 2[

Fig. 8 PCC (%) of the two experiments in relation to weight
parameter 6.
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Fig. 9 Computing time of the five ISPM methods in the two ex-
periments
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Fig. 10 PCC (%) of PAN-ISPM result in relation to BDSD and
PCA in the two experiments
K10  M>525  PAN-ISPM ) PCC (%) 5 BDSD FI PCA Y

3 Conclusion
In this paper, the PAN-ISPM is proposed to im-

prove the mapping result. First of all, the original coarse
hyperspectral image is utilized to obtain the improved im-
age by pansharpening in the novel processing path, and
the improved image is unmixed to produce the novel fine
fraction images. The finer fraction images with more spa-
tial-spectral information e then obtained by integrating
the novel fine fraction images from the novel path and the
existing fine fraction images from the existing path. Fi-
nally, the final mapping result is derived by class alloca-
tion method according to the predicted values from the
finer fraction images. Because the coarse resolution of
the original image is improved by pansharpening in the
novel processing path, the more spatial-spectral informa-
tion of the original image could be fully supplied to
ISPM, and the final mapping result is improved. The vi-
sual and quantitative comparison with the existing ISPM
methods shows the result of the PAN-ISPM is better.

The appropriate parameter 6 is selected by multiple
tests in this paper. Therefore, an adaptive method for se-
lecting 6 is worth studying in future work. In addition,
the PAN-ISPM includes more processing steps than the
other four ISPM methods. Therefore, it is necessary to
optimize the structure of the proposed method and speed
up its operation in the future.
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