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Abstract : Dielectric behavior of PbZr, 5 Tiy, 5, O; multilayer with alternating dense and porous PbZr, ;4 Ti, ., O, layers was
investigated at 420K. Two distinct dielectric relaxation processes were observed in the frequency range from 10* Hz to 10°
Hz. The relaxation at lower frequencies is attributed to the space charge polarization. The one at higher frequencies, with a
thermal activation energy of 0.49 eV, might originate from the response of singly positive charged defect dipoles V, - Ti**
to ac electric fields. These dipoles are formed by the doubly ionized oxygen vacancies V, and trivalent titanium ions Ti®* as
indicated by the results of Auger electron spectrum and electron paramagnetic resonance spectrum.
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Introduction

Processing-related lead and oxygen vacancies
(Vp,,V,) are ubiquitous point defects in PbZr, Ti, O,
(PZT) material and have a remarkable influence on
ferroelectric and dielectric properties of PZT material.

For example, La-doping can effectively eliminate B-site
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deficiencies in PbTiO, , which makes PbTiO, exhibit gi-
ant dielectric permittivity, lower loss, and excellent
thermal stability!'). Metal acceptor impurities (such as
Pt, Fe, and Ni), substituting for Ti** ions in PZT,
can couple with the nearby oxygen vacancies V| to
form dipolar defect complexes. These defect dipoles act

as domain wall pinning agents, giving rise to the polar-
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ization fatigue and imprint. They can rearrange them-
selves under a dc field at an elevated temperature via
V, hopping between nonequivalent sites in a unit

122-°) The Ti** - V, defect center was first ob-

cel
served by Scharfschwerdt et al. both in pure and re-
duced BaTiO, single crystal and in BaTiO,; thin

films!®7]

. Ti’* ions could also be present in PZT as
proved by Robertson and Nagaraj et alFs’ *1 Therefore,
the study on the behavior and electronic structure of
Ti’* ions has been of great interest to condensed matter
physics and materials science.

In the past several years, to promote application
of multifunctional PZT material in photonic band-gap
engineering, we developed a simple method for .con-
structing one-dimensional periodic PZT multilayers
based on phase separation using one single chemical
solution. The building block of PZT multilayer is a bi-
layer consisting of dense and porous PZT layers. Be-
sides good performance as dielectric reflectors and opti-
cal cavities, the prepared multilayer stacks exhibit ex-
cellent electric properties, such as low leakage current
density, high remanent polarization, and large dielec-
tric permittivity, etc (10,113

We reported previously the investigations on die-
lectric and ferroelectric properties of a 2. 1pum thick
PbZr, 4 Ti, ¢, O, multilayer (PZTM) with 24 pairs of
dense and porous PZT layers, which was grown on Si
wafer buffered with a 200 nm conductive metallic oxide
LaNiO, (LNO) layer'""!. Figure 1 displays the dielec-
tric loss tand spectrum measured on the PZTM at 420 K
(solid line). The peak at lower frequencies originates
mainly from space charge polarization, as identified in
Ref. 11. The dielectric relaxation at higher frequencies
follows the Arrhenius law and is thermally activated
with activation energy of 0. 49 eV, The dielectric
relaxation behavior seems to be sample dependent,
with some of samples having a pronounced shoulder
and some showing very weak above-mentioned relaxa-
tion properties (see Fig. 1). Although it was suggested
that the high-frequency dielectric relaxation occurring
in the PZTM was closely related to oxygen vacancy at
that time, the underline mechanism was still unclear.

The work presented here tries to determine the

fundamental electric polarization species corresponding

Tand
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Fig. 1 Dielectric loss spectra measured on the two multilayers
at 420K, the solic line corresponds to the PbZr, 4 Ti, 5, 0; mul-
tilayer investigatec in the Ref. 11, and the dashed line denotes
the one with a littie of Ti®* ions.
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to the high-frequency dielectric relaxation ( HFDR)
observed in the PZTM. The response of singly positive
charged defect dipoles (V, ~Ti’*) ~ formed by doubly
ionized oxygen vacancies V, and trivalent titanium ions

Ti’* to ac electric fields is considered as the origin of

‘the HFDR.

1 Experime¢nt

The average thickness of a single bilayer in the
PZTM is ~ 90 am, and crystallization time at 700C is
480s for the PtZr, 4 Ti, ¢, O, gel layer. For compari-
son, another PZT multilayer with a nominal Zr/Ti ratio
of 40/60 was ‘also grown on silicon substrate with
LaNiO, buffer 'ayer. The fabricating process for the
PbZr, ,Tiy ¢ O; multilayer with 14 pairs of dense and
porous PbZr, ,Ti, (O, layers was similar to that for the
PZTM. The avecrage thickness of a pair of dense and
porous PbZr, ,Ti, (O, layers is ~ 112nm, and annea-
ling time at 700°C for the PbZr, , Ti, (O, gel layer is
300s. The detsiled sample preparation was described
elsewhere!") . Dielectric diSpersion spectra were meas-
ured using an 1P4194A impedance analyzer under a
0.5 V ac driviag voltage in a background vacuum of
107? Pa. Electron paramagnetic resonance ( EPR)
measurements vere performed using an EPR spectrom-
eter (ERUKER EMX -8/2.7) working in the X-band
(9. 865GHz ). Auger electron spectroscopic ( AES)
measurement, followed by Ar ion etching, was repeat-

edly conducted on the PZTM sample.
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2 Results and Discussion

Figure 2 shows the depth profile of atomic concen-
tration, measured on the as-grown PZTM. From Fig.
2, it can be seen that there is a ~ 10 nm thick defect
layer or dead layer with a high concentration of oxygen
vacancies below the free-surface of the PZTM. Since
the dead layer thickness is much thinner than that of
the bulk of the PZTM ( ~2.1um), the measured total
dielectric spectra at higher frequencies are mainly con-
tributed by the bulk of the PZTM according to the die-
lectric equivalent circuit model, i. e. , the influence of
the defect layer on the dielectric response of the PZTM
can be ignored.

There are four known possible polarization mecha-
nisms in a dielectric medium which can give rise to di-
electric relaxations. They are electronic, ionic, dipo-

(2] " Electronic and

lar, and space charge polarizations
ionic relaxations appear typically at frequencies above
10" Hz, and thus are not observed in our studies. Be-
cause the low-frequency dielectric relaxation has been
identified as the space charge polarization!""! | the ob-
served HFDR with a single relaxation time in the PZTM
is most likely originated from dipolar polarization.

In ABO, _ perovskite oxides, a common and pro-
cessing-related point defect is doubly ionized oxygen
vacancy V, which plays an important role both in elec-
tric conduction and in dielectric response. The activa-
tion energy E, of oxygen vacancy V,, is closely related

to the concentration of oxygen deficiency y, and can be

written as;[m
E (y) =277 (eV) (1)
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As shown in Fig. 2, except for a thin defect layer
below the free-surface of the PZTM, lead and oxygen
deficits occur simultaneously in the film, and the aver-
age percentage of oxygen atomic concentration in the
bulk of the PZTM is ~ 58% , corresponding to a mean
oxygen atom number of 2.9 or an oxygen deficiency pa-
rameter y =0. 1 in the unit cell of PZT. The E, value
of 0.5eV can be calculated by substituting ¥ =0. 1 into
Eq. (1), consistent with that determined using Arrhe-
nius law. Thus, it is reasonable to conclude that the
oxygen vacancy V, may be involved in the high-fre-
quency dielectric relaxation of PZTM.

According to the defect chemistry analysis, Ti** i-
ons can be found in PZT due to oxygen loss process as

follows ; 1*1

4Tiy, +20; = 4Ti,+2V, + 0, , (2)
where the Kriger-Vink notation is employed, (Sp)C
represents the structural element, S is the species, P is
the crystallographic position, C is the charge state of
the species relative to the site that it occupies, and x is
for neutral. As elucidated by Eq. (2), Ti** ionizing
to Ti’* is accompanied by the creation of V, , and the
ionization energy of Ti** to Ti’* is estimated to be ~
0.5 V. On the other hand, Robertson et al. have
demonstrated that it is reliable to determine valences of
elements in PZT power by measuring EPR spectra, and
provided a substaintial evidence of existence of Ti’*
ions in PZT'®). Figure 3 shows the EPR measurements
for the two specimens. As rendered by the dashed line
in Fig. 3, a very strong first harmonic signal of Ti’*
ion is detected near the magnetic filed of 3500 gauss
( corresponding to a g-factor value of 2. 000) , agreeing
well with the observations by Robertson et al. Howev-
er, Ti’* signal is very weak in the PbZr, ,Ti, (O, mul-
tilayer with 14 bilayers consisting of dense and porous
PbZr, ,Tiy ¢O; layers (denoted by the solid line in the
Fig. 3), correspondingly, in which the HFDR was
hardly observed. For comparison, fig. 1 also shows the
spectra of dielectric loss measured on the PbZr, ,Ti, ,
O, multilayer with a little of Ti’*ions at 420 K. Only a
dielectric loss peak locating at lower frequencies is re-
markably visible in the investigated frequency range.
This evidences that the observed HFDR in the PZTM is

also related to the Ti’* ions.
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Fig.3 Electron paramagnetic resonance spectra measured on
the two PZT multilayers. The dashed line corresponds to the
PZTM in which a HFDR has been detected, and the solid line
to the PbZr, 5 Ti, ¢, O, multilayer in which only a low-frequency
loss peak has been observed.
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Other possible point defects in the PZTM include
lead vacancies, metallic atoms, as well as trivalent ac-
ceptor impurities. Lead and oxygen vacancies could not
form energetically stable dipolar defect complexes, as
demonstrated by Poykks and Chadi from the first prin-

(4] Extensive studies have

ciple calculation analysis
shown that metallic atoms and trivalent acceptor impu-
rities such as Pt, Ni’*, Fe’* (they substitute for Ti**
ions) , and Ti’*tend to couple with V,, forming dipolar
defect pairs in Ti-based perovskite compounds'~*.
However, the results of AES measurements show no
signatures of other metallic atoms and trivalent acceptor
impurities in the PZTM. V, is considered to be the
most mobile defect in this kind of oxides. When a V,
moves close to a Ti’* ion, the strong electrostatic inter-
action between them leads to the creation of a polar de-

fect association'?!.

Based on the above analysis, we
conclude that the microscopic entity responsible for the
dielectric relaxation centered at 49kHz is defect dipoles
V, —Ti’* ', similar to those observed in BaTiO, mate-
rial system!®7’.

The maximum value of the dielectric loss, due to
the dipolar polarization with a single relaxation time 7,

takes(!]

&, — Eq Ndlu,2

o b
2 Jee. 3kT

at ot ~1, where g, is static permittivity, £, the per-

(tand),,, = (3)

mittivity at optical frequencies, N, the dipole concen-

tration, u the lipolar moment, k the Boltzmann con-
and 1 the Thus,

(tand) ,,,, is proportional to N,. At given temperature

stant, absolute

temperature.
the dielectric relaxation associated with the dipolar po-
larization is measurable within the resolution limit of
the impedance analyzer only when N, is large enough.
ERP result shovs that the concentration of Ti’* ions in
the PbZr, ,Ti; 4 O;multilayer is very low, thus the num-
ber of the V, -- Ti’* dipolar defects is expected to be
very low. As a result, its contribution of the relaxation
to the dielectric loss is negligible.

Both creation and concentration of oxygen vacancy
in perovskite cxides are closely related to processing
conditions and doping. The formation of oxygen vacan-
cy is accelerated with increasing crystallization time

(16, 17]

and temperatur: . The oxygen loss is always ac-

companied by the formation of lead vacancies or Ti’* i-
ons for charge :ompensation. We believe that the dis-
crepancy in the concentration of Ti** ions observed in
the two investigated PZT multilayers is due to the dif-

ferent sample crystallization time.
3 Conclusion

In summary, we have observed an abnormal high-
frequency diele:tric relaxation in the PZTM. The relax-
ation is found due to the dipolar defect complex Ti** —
V, formed throtigh a Ti** ion becoming Ti** via loosing
a hole or capturing an electron and then coupling with

a nearby V.
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