文章编号:1001-9014(2009)03-0224-05

多波长激光的大气消光系数相关性 及实时反演计算研究

吴荣华, 王江安, 康 圣, 任席闯 (海军工程大学 电子工程学院,湖北 武汉 430033)

摘要:利用 Mie 散射理论并结合激光多点断层测量技术,得到了不同波长消光系数之间的相关关系.使用自主研制的激光遥感式后向散射能见度测量仪,利用实测数据得到了波长为1.06μm 激光的大气消光系数,进而利用不同波 长消光系数间的相关关系实时反演计算了波长为0.532μm、0.86μm、1.57μm 和3.47μm 激光的大气消光系数,并 与实测波长为0.532μm 的大气消光系数进行了比对,结果表明可以使用大气消光系数相关性实时反演计算红外辐 射大气传输并建立红外辐射实时大气传输修正模型.

关 键 词:大气光学;Mie 散射;消光系数;消光效率因子;红外辐射 中图分类号:TN958.98 **文献标识码**:A

CORRELATIVITY OF ATMOSPHERIC EXTINCTION COEFFICIENT AND REAL-TIME INVERSION COMPUTATION FOR MULTI-WAVELENGTH LASER

WU Rong-Hua, WANG Jiang-An, KANG Sheng, REN Xi-Chuang (Electronic Engineering College, Naval University of Engineering, Wuhan 430033, China)

Abstract: The correlativity of extinction coefficients at different wavelengths was obtained by Mie scattering theory and the laser multipoint fault measuring techniques. The atmospheric extinction coefficient at the wavelength of $1.06\mu m$ was measured with the laser remote sensing back scattering hazemeter made by ourselves. Then the extinction coefficients at the wavelengths of $0.532\mu m$, $0.86\mu m$, $1.57\mu m$ and $3.47\mu m$ were inversely calculated real-timely with the correlativity of extinction coefficients at different wavelengths. They were compared with the measured extinction coefficient at the wavelength of $0.532\mu m$. The results show that it is feasible to inversely calculate the infrared radiation atmospheric transmission and establish the infrared radiation real-time atmospheric transmission correcting model with the correlativity of extinction coefficients at different wavelengths.

Key words: atmospheric optics; Mie scattering; extinction coefficient; extinction efficiency factor; infrared radiation

引言

现代光电子技术的迅速发展,极大地促进了军 事光电技术的日趋成熟和完善.目前,卫星、飞机等 现代军事作战平台,普遍装备了前视红外系统、红外 热像仪、激光测距、微光夜视及红外夜视等光电侦测 设备,同时还大量装备了红外制导导弹等光电精确 制导武器.然而红外辐射在大气中传输时会严重失 真:大气气体分子及气溶胶的吸收和散射会引起光 束能量衰减,空气折射率不均匀会引起光波的振幅, 和相位起伏;当光波功率足够大、持续时间极短时, 非线性效应也会影响光束的特性,导致红外辐射传 输测量失真.复杂多变的气象条件使对不同波长的 红外大气消光特性的实时计算相当困难^[1~4].本文 以 Mie 散射理论为基础,通过分析近红外各波长激 光消光特性的相关性,在可见光、近红外(1~ 3μm)、中红外窗口(3~5μm)选取特定波长激光并 分析得到各激光波长消光系数之间相关性函数关 系,计算特定波长(如1.06μm)激光的消光系数,进 而可以实时反演计算出0.532~5μm 整个波段中其

收稿日期:2008-06-21,修回日期:2008-12-18

Received date: 2008 - 06 - 21, revised date: 2008 - 12 - 18

基金项目:国家 863 计划某专题资助项目;"十一五"预研项目(4010605020402)

作者简介:吴荣华(1980-),男,湖北武汉人,博士生,从事红外大气传输在军用目标探测与制导技术中的研究.

图1 单个粒子的光散射图

Fig. 1 The figure of light scattering by a single particle

它波长的消光系数,以此为基础建立空中目标红外 辐射实时大气传输修正模型.

1 理论基础与分析

1.1 Mie 散射理论及消光效率因子计算

Mie 散射理论是将 Lorenz 电磁场理论用于研究 微小半径粒子对电磁场的吸收和散射的经典理论, 是对均匀介质的球形颗粒在单色平行光照射下的电 磁场方程的精确解^[5,6]. 如图 1 所示,半径为 R 的粒 子相对于周围介质的折射率用复数表示为 $m = m_1$ + jm_2 . 取粒子中心为坐标原点 O,波长为 λ 、强度为

 I_0 的线偏振光沿着 z 轴入射到粒子上,散射光 \vec{OP} 与 入射光方向之间散射角为 θ ,入射光的电矢量相对 于散射面的夹角为 φ .

由 Mie 散射理论, 与粒子中心 O 相距为 r 处 P 点上的散射光强为:

$$I_{sca} = I_0 \frac{\lambda^2}{4\pi^2 r^2} I(\theta, \varphi) \quad , \qquad (1)$$

式(1)中与角度相关的散射光强度 $I(\theta, \varphi)$ 为:

$$I(\theta,\varphi) = I_1 \sin^2 \varphi + I_2 \cos^2 \varphi$$

= $|S_1(\theta)|^2 \sin^2 \varphi + |S_2(\theta)|^2 \cos^2 \varphi$, (2)

式中, I_1 , I_2 分别表示垂直及平行于散射平面的散射 强度函数分量,而 S_1 , S_2 表示幅值函数,且具有无穷 级数的形式:

$$S_1(\theta) = \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)} [a_n \pi_n(\cos\theta) + b_n \tau_n(\cos\theta)] \quad , \qquad (3)$$

$$S_2(\theta) = \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)} [a_n \tau_n(\cos\theta) + b_n \pi_n(\cos\theta)] \quad , \qquad (4)$$

式(3)、(4)中 a_n 、 b_n 为 Mie 散射系数, 是尺度参数 α = 2 π NR/ λ 和相对折射率 m 的函数:

$$a_{n} = \frac{m\varphi_{n}(m\alpha)\varphi_{n}^{(l)}(\alpha) - \varphi_{n}(\alpha)\varphi_{n}^{(l)}(m\alpha)}{m\varphi_{n}(m\alpha)\xi_{n}^{(l)}(\alpha) - \xi_{n}(\alpha)\varphi_{n}^{(l)}(m\alpha)} \quad , \quad (5)$$

$$b_n = \frac{\varphi_n(m\alpha)\varphi_n^{(l)}(\alpha) - m\varphi_n(\alpha)\varphi_n^{(l)}(m\alpha)}{\varphi_n(m\alpha)\xi_n^{(l)}(\alpha) - m\xi_n(\alpha)\varphi_n^{(l)}(m\alpha)} \quad , \quad (6)$$

其中, $\varphi_n(z) = (\pi z/2)^{1/2} J_{n+\frac{1}{2}}(z), \xi_n(z) = \varphi_n(z) + ix_n(z), x_n(z) = -(\pi z/2)^{1/2} N_{n+\frac{1}{2}}(z), J_{n+\frac{1}{2}}(z)$ 和 $N_{n+\frac{1}{2}}(z)$ 分别为半奇解的第一类贝赛尔函数和第二 类贝赛尔函数, $\varphi^{(1)}, \xi^{(1)}$ 为其自变量的微商.式(3)和式(4)中的 π_n, τ_n 由下式给出:

$$\pi_n(\cos\theta) = P_n^{(l)}(\cos\theta) / \sin\theta$$
$$= \frac{dP_n(\cos\theta)}{d(\cos\theta)} , \qquad (7)$$

$$T_n(\cos\theta) = \frac{\mathrm{d}P_n^{(1)}(\cos\theta)}{\mathrm{d}\theta}$$
, (8)

式中 P_n 是 Legendre 函数, $P_n^{(l)}(x) = dP_n(x)/dx$.

在 Mie 理论中,粒子散射光强的计算,实质上归 结为散射效率因子 $Q_{sc}(\alpha,m)$ 、吸收效率因子 $Q_{ab}(\alpha,m)$ 和消光效率因子 $Q_{ex}(\alpha,m)$ 的计算. $Q_{sc}(\alpha,m)$ 、 $Q_{ab}(\alpha,m)$ 和 $Q_{ex}(\alpha,m)$ 分别可表示为:

$$Q_{sc}(\alpha,m) = \frac{2}{\alpha^{2}} \sum_{n=1}^{\infty} (2n+1)(|a_{n}|^{2} + |b_{n}|^{2})$$

$$Q_{ex}(\alpha,m) = \frac{2}{\alpha^{2}} \operatorname{Re} \left(\sum_{n=1}^{\infty} (2n+1)(a_{n} + b_{n}) \right)$$

$$Q_{ab}(\alpha,m) = Q_{ex}(\alpha,m) - Q_{sc}(\alpha,m)$$
(9)

1.2 不同波长消光相关性理论分析

对于气溶胶来说,设其粒子分布模型为*n*(*r*),根据 粒子尺度谱分布,可以计算群体粒子的消光系数^[7-9]:

$$\sigma(\lambda) = \int_{x_1}^{x_2} Q_{ex}(\alpha, m) \pi r^2 n(r) dr \quad . \tag{10}$$

由尺度参数 $\alpha = 2\pi r/\lambda$ 得到 $r = \lambda \alpha/2\pi$,将其代 人式(10),得到

$$\sigma(\lambda) = \int_{x_1}^{\infty} Q_{ex}(\alpha, m) \pi (\lambda \alpha/2\pi)^2 n (\lambda \alpha/2\pi) d\lambda \alpha/2\pi \quad . \quad (11)$$

对于不同波长的激光,在相同的时间和环境下, 其粒子的分布情况是完全一样的,因此有:

$$\sigma(\lambda_i) = \frac{\int_{x_1}^{x_2} Q_{ex}(\alpha_i, m) \pi(\lambda_i \alpha_i/2\pi)^2 n(\lambda_i \alpha_i/2\pi) d\lambda_i \alpha_i/2\pi}{\int_{x_1}^{x_2} Q_{ex}(\alpha_1, m) \pi(\lambda_1 \alpha_1/2\pi)^2 n(\lambda_1 \alpha_1/2\pi) d\lambda_1 \alpha_1/2\pi}$$
(12)

另外,利用激光多点断层测量技术,根据激光传 输方程得:

$$P(R_1) = \frac{CE\beta(R_1)}{R_1^2} \cdot e^{-2\int_0^{R_1} \sigma_{\lambda}(R) \, dR} \quad , \qquad (13)$$

$$P(R_2) = \frac{CE\beta(R_2)}{R_2^2} \cdot e^{-2\int_0^{R_2} \sigma_{\lambda}(R) dR} , \qquad (14)$$

其中,C为激光雷达系统常数;β为大气后向散射系 数;σ为消光系数;E为激光系统常数,它由激光发 射功率,激光脉冲宽度,望远镜的有效接收面积共同 决定

由于采样间隔较小,可以假设在采样间隔内存 在下式

$$\beta(R_1) = \beta(R_2) \quad , \tag{15}$$

$$\int_{0}^{\kappa} \sigma_{\lambda}(R) dR = \sigma(\lambda)R \quad , \tag{16}$$

$$\frac{P(R_1)}{P(R_2)} = \left(\frac{R_2}{R_1}\right)^2 \cdot e^{-2\sigma(\lambda)(R_1 - R_2)} \quad . \tag{17}$$

由式(13)、(14)、(15)、(16)和(17)可以推导 出消光系数 σ(λ)为:

$$\sigma(\lambda) = -\frac{1}{2(R_1 - R_2)} \ln \frac{P(R_1)R_1^2}{P(R_2)R_2^2} \quad . \quad (18)$$

由式(12)、(18)可以得到用激光遥感方式实时获取 近红外多波长激光消光特性,通过实验获取波长为 λ_1 的消光系数 $\sigma(\lambda_1)$,可以得到波长为 λ_i 的消光 系数 $\sigma(\lambda_i)$:

$$\sigma(\lambda_i) = A \frac{-1}{2(R_1 - R_2)} \ln \frac{P(R_1)R_1^2}{P(R_2)R_2^2} \quad , \quad (19)$$

其中,系数 A 的计算公式为:

$$A = \frac{\int_{x_1}^{x_2} Q_{ex}(\alpha_i, m) \pi(\lambda_i \alpha_i/2\pi)^2 n(\lambda_i \alpha_i/2\pi) d\lambda_i \alpha_i/2\pi}{\int_{x_1}^{x_2} Q_{ex}(\alpha_1, m) \pi(\lambda_1 \alpha_1/2\pi)^2 n(\lambda_1 \alpha_1/2\pi) d\lambda_1 \alpha_1/2\pi} \quad . (20)$$

综上所述,通过分析获取各波长近红外激光消 光相关性,可以得到红外辐射实时大气传输修正模 型,通过在可见光、近红外(1~3μm)、中红外窗口 (3~5μm)选取特定波长激光并分析得到各激光波 长消光系数之间相关性函数关系,计算特定波长激 光的消光系数,进而可以实时反演计算出 0.532~ 5μm 整个波段中任意波长的消光系数.

2 实验仪器及原理

在实际红外大气传输修正系统中,由于利用激 光雷达多点断层法测量计算消光系数 $\sigma(\lambda)$,其计 算量大、实时性差,而利用能见度与大气消光系数之 间的关系能实现简化计算^[10,11],使用海军工程大学 光电所自主研制的激光遥感式大气能见度测试仪实 时测量能见度,进而获取 1.06 μ m 波长激光的实时 大气消光系数 $\sigma(\lambda)$.其中,通过大量实验统计,能 见度与消光系数的关系有以下修正经验公式 V为:

$$V = \frac{3.912}{\sigma(\lambda)} \left(\frac{\lambda}{0.55}\right)^{-q} \quad , \tag{21}$$

其中,在水平能见度较好时q=1.6,水平能见度为中等时取q=1.3,水平能见度小于6km时取q=0.585V^{1/3}.

表1 激光遥感式能见度测试仪主要技术指标

 Table 1
 The principal technical indicators of laser remote sensing visibility tester

测量范围:50~200	00m	精确度:±15%	重量:2.8kg	
工作环境:温度 - 50 ~ + 50℃		湿度 0-100%	水平旋转: 0~360°	
激光器 Laser		接收光学系统		
工作波长:	1060nm	口径:	48 mm	
脉冲能量:	1 l mJ	视场:	7°	
光束发散角:	1 m rad	滤光镜中心波长:	1064 nm	
脉冲宽度:	10 ns	滤光镜透过率:	88%	

表 2 实验数据情况说明

Table 2 The	explaination	of ex	perimental	data
-------------	--------------	-------	------------	------

	试验单位	测量方式	实验次数	记录方式
	武汉地方气象台	仪器测量+目测	161	每天同步记录5组
	湖北某部气象台	仪器测量 + 目测	1371	每天同步记录 24 组
	北京某部气象台	仪器测量 + Vaisala	1 49	每天同步记录 24 组
1				

本仪器采用后向散射式测量法,通过计算回波 信号的衰减来计算大气的衰减系数,从而计算大气 能见度.仪器由脉冲激光器、接收望远镜和信号检测 控制处理系统3个基本组成部分构成.仪器的主要 技术指标如表1所示.

3 实验及计算结果分析

3.1 激光遥感式能见度仪测量数据

本试验分三个阶段进行,具体情况见下表2.总 共完成试验1681次,试验经历了晴好、阴天、轻雾、 大雾、雨、霾、烟、风等天气现象,湿度范围:13~ 99%;温度范围为:4~35℃.

图 2 为在北京某部气象台测量的能见度数据分 布图,并且与 Vaisala 同步测量数据进行比对,选取精 确且具有代表性的数据,为后面分析计算提供数据.

3.2 不同波长消光系数相关性计算分析

本文主要选取在北京某部气象台所测数据进行分

图 2 实验测量能见度数据对比图

Fig. 2 The collation map of the experimental visibility data

析计算,该数据具有代表性,并且在使用我们自己的仪 器的同时与 Vaisala 所测数据进行同步测量比对,数据 精度高. 另外,在此次实验的过程中,同步利用 0.532μm 波长激光测试系统对其消光系数进行了实测 并计算,得到了多组实际数据.根据 q 值区分的能见度 范围选取数据进行计算分析,试验计算使用了 0. 532μm、0.86μm、1.57μm 和 3.47μm 四种不同波长激 光,所使用的能见度仪的工作波长为 1.06μm,通过能 见度与消光系数之间的经验公式可计算出波长为 1. 06μm 的消光系数,再利用波长为 1.06μm 的消光系数 反演计算出其它 4 个波长的消光系数.表 3 列出了波 长为 0.532μm 的实际测量计算得到的消光系数数据, 选取了多组典型数据;表 4 为利用本文算法,通过能见 度仪得到波长1.06μm的消光系数后反演计算的结果.

实际测量数据与计算结果基本一致,由于在实际计算过程中使用的数据量有限,仪器测量也存在误差传递,因此实际测量数据与计算结果存在一定的误差.结果表明在近红外波段范围内,不同波长的消光系数与波长相关,激光波长越长则消光系数越小,可以利用波长与消光系数之间的相关关系进行 红外大气传输修正的实时计算.

表 3 同步实测计算波长为 0.532μm 的消光系数统计表 Table 3 Statistics of extinction coefficient for wavelength of

 $0.532\,\mu m$ by synchronism actual measurement computation

		Extin	ction				
Weather Conditions		Coefficient		Actual r	Actual measurement		
			/km ⁻¹		0.532 µm		
		Visibility/	/km				
Mist		1.9km	2km	1.1354	1.0917		
Haze	Rain	2.8km	4km	0.8634	0.5367		
Haze	Rain	5.9km	10km	0.3472	0.2479		
Fine		18.1km	20km	0.0701	0.0545		
Clear		23km	50km	0.0514	0.0223		

4 结论

本文根据 Mie 散射理论及其球形粒子的消光效 率因子的计算方法,分析了近红外不同波长与消光 系数之间的相关关系.根据能见度与消光系数之间 的经验公式,并利用我所根据激光多点断层测量技 术研制的激光遥感式后向散射能见度仪,对公式 (19)进行简化计算,可以实时反演计算其它波长的 消光系数,实际测量数据计算结果显示与理论计算 基本一致,误差的来源主要是由于在利用 Mie 散射 理论计算使用的经典假设以及激光遥感能见度仪的 固有误差,下一步的工作是进一步提高计算精度.计 算结果表明,本文方法能应用于红外辐射实时大气 传输修正模型.

REFERENCES

- Maha Achour. Simulating atmospheric free-space optical propagation, part II: haze, fog and low clouds attenuations
 J. Proceedings of SPIE, 2002, 4873:1-12.
- [2] PENG De-Quan, ZHOU Cheng-Ping, DING Ming-Yue. Simulative calculation methods of atmospheric transmittance of LWIR under sea and sky background [J]. Infrared and Laser Engineering(彭德权,周成平,丁明跃.海空背景长 波红外大气透过率的访真计算方法. 红外与激光工程), 2001,30(2):112—117.
- [3] ZHANG Guang-Ming, SUN Sheng-Li, ZHANG Wei, et al. Model and application of image plane illumination for the space-based infrared detection of boost-phase missile [J].
 J. Infrared Millim. Waves(张光明,孙胜利,张伟等.导弹 助推段天基红外探测的像面照度模型及其应用. 红外与 毫米波学报),2007,26(6):425-428.
- [4] GUAN Li, HUANG Hung-Lung. Array co-registration error of airs [J]. J. Infrared Millim. Waves (官莉. HUANG Hung-Lung. 大气红外探测仪的探测器序列定位误差. 红 外与毫米波学报),2007,26(2):153-156.
- [5] Mishchenko M I, Travis L D, Lacis A A. Scattering, Absorption, and Emission of Light by Small Particles [M].

表 4	同	步反演计算不同波长消光系数统计表
Table	4	Extinction coefficient statistics of different wavelength by synchronism inversion computation

Weather	Conditions	Extinction Coefficient /km ⁻¹ Visibility/km	0. 532µm	0.86µm	1.06µm	1.57µm	3.47µm
Mist		I.9km 2km	1.0888 1.0217	0.9891 0.9281	0.9717 0.9118	0. 8769 0. 8229	0.7483 0.7022
Haze	Rain	2.8km 4km	0.6657 0.4180	0.6047 0.3797	0. 5941 0. 3730	0.5362 0.3366	0.4575 0.2872
Haze	Rain	5.9km 10km	0.2476 0.1135	0.2250 0.1031	0.2210 0.1013	0. 1994 0. 0914	0.1702 0.0780
Fine	-	18. 1 km 20 km	0.0620 0.0568	0.0563 0.0516	0.0553 0.0507	0.0499 0.0458	0.0426 0.0390
Clear		23 km 50 km	0.0490 0.0155	0.0445 0.0140	0.0437 0.0138	0.0394 0.0125	0.0337 0.0106

28 卷

Published by the press Syndicate of the university of Cambridge, 2002.

- [6] WANG Shao-Qing, REN Zhong-Jing, ZHANG Xi-Ming. Study of calculating method of mie scattering coefficient [J]. Applied optics(王少清,任中京,张希明等. Mie 散射 系数计算方法的研究. 应用光学),1997,18(2):4-9.
- [7] SUN Jing-Qun. Atmosphere Detection by Laser [M]. Beijing: Science Press, 1986. (孙景群. 激光大气探测),北 京:科学出版社, 1986.
- [8] Vul'fson A N. Spectral modification beer's law and relation from humidity attenuation coefficient in the atmospheric maritime mist[J]. Proceedings of SPIE, 2000, 4341:649-655.
- [9]YAN Feng-Qi, HU Huan-Ling, ZHOU Jun. Measurements of number density distribution and imaginary part of refractive index of aerosol particles[J]. Acta Optica Sinia(阎逢 旗,胡欢陵,周军. 大气气溶胶粒子数密度谱和折射率虚

(上接167页)

受 MBE 设备影响,材料生长仍然没有最优化;二、目前的光导探测器在厚度,载流子浓度钝化等方面没有优化.因此,量子效率及噪声随着器件结构改善仍会 有较大提高.但是 InAs/GaSb 超晶格具有上述两种材 料不具备的在匹配衬底上从短波到甚长波范围工作 的特点.

3 结论

采用 MBE 方法,在 GaAs 衬底上生长了两种晶体结构完整的短周期 InAs/GaSb 超晶格:2ML/8ML 和 8ML/8ML,并相应制备了短波和中波的单元光导 探测器.77K下,50% 截止波长分别为 2.1 μ m 和 5.0 μ m.响应率及 D *_x等实验结果为国内开展 InAs/GaSb II 型超晶格红外探测器的研究提供了依 据.其中,超短周期 InAs/GaSb (2ML/8ML)短波红 外探测器使该材料体系截止波长范围延伸至 2 μ m. 为实现焦平面和双色探测器,研究方向将在 GaSb 衬底上生长性能更高的 pin 二极管.

REFERENCES

- [1] Sai-Halasz G A, Tsu R, Esaki L. A new semiconductor superlattice[J]. Appl. Phys. Lett., 1977, 30:651-653.
- [2] Mohseni H, Wojkowski J, Razeghi M, et al. Uncooled InAs/GaSb type-Ⅱ infrared detectors grown on GaAs substrates for the 8~12m atmospheric window[J]. Journal of <<<<<><>

 K永刚. InP 基 InO. 53Ga0. 47 As 光电探测器的量子效率 优化. 红外与毫米波学报),2008,27(2):81—85.

[9] LI Zhong-Ya, CHENG Lei, LI Cheng-Fu. Study of Laser Damage of Silica and Sapphire Crystal [J]. Chinese Journal of Lasers(李仲伢,程雷,李成富.熔石英玻璃和白宝石晶 体激光损伤的研究.中国激光),2002,A29(10):920— 924. 部的测量.光学学报),2003,23(7):855-859.

- [10] HAN Yong, RAO Rui-Zhong, WANG Ying-Jian. Multiwavelength aerosol optical characteristics obtained by atmospheric visibility [J]. Infrared and Laser Engineering (韩永,饶瑞中,王英俭.利用大气能见度获取多波长气 溶胶光学特性. 红外与激光工程),2007,36(2):265— 269.
- [11] Horvath H. Atmospheric visibility [J]. Atmospheric Environment, 1981, 15:1785-1796.
- [12] RONG Zhi-Guo, ZHANG Yu-Xiang, JIA Feng-Min, et al. On-orbit radiometric calibration of fengyun geostationary meteorological satellite's infrared channels based on seasurface measurements in the south china sea[J]. J. Infrared Millim. Waves(戌志国,张玉香,贾凤敏,等.利用南 海水面开展我国静止气象卫星红外通道在轨辐射定 标. 红外与毫米波学报),2007,26(2):97-101.

Quantum Electronics, 1999, 35:1041-1044.

- [3] XU Xiang-Yan, YE Zhen-Hua, LI Zhi-Feng, et al. Numerical modeling of middle wavelength two-color photovoltaic HgCdTe detectors[J]. J. Infrared Millim. Waves(徐向晏, 叶振华,李志锋,等.中波双色光伏型 HgCdTe 红外探测 器模拟研究. 红外与毫米波学报),2007,26(3):164— 169.
- [4] Dente G C, Tilton M L. Pseudopotential methods for superlattices: Applications to mid-infrared semiconductor lasers
 [J]. J. Appl. Phys., 1999, 86: 1420-1423.
- [5] Hao R T, Xu Y Q, Zhou Z Q, et al. MBE growth of very short period InAs/GaSb type-II superlattices on (001) GaAs substrates[J]. J. Phys. D: Appl. Phys., 2007, 40: 6690-6693.
- [6] Walther M, Schmitz J, Rehm R, et al. Growth of InAs/ GaSb short period superlattices for high performance resolution mid-infrared focal plane array detectors [J]. J. Crystal Growth., 2005, 278:156-161.
- [7] Wei Y J, Hood A, Yau H, et al. Uncooled operation of InAs/GaSb type II superlattices photodiodes in the midwavelength infrared range[J]. Appl. Phys. Lett. ,2006,86: 233106-1-3.
- [8] Liu Y X, Xia G Q, Tang S Q, et al. Antireflection coating for GaInAsSb/GaSb PIN infrared photodetectors [J]. J. Functional Materials and devices(刘延祥,夏冠群,唐绍裘, 等. GaInAsSb/GaSb 红外探测器抗反膜的研究. 功能材料 与器件),2005,11:327-332
- [9] TIAN Zhao-Bing, GU Yi, ZHANG Yong-Gang. Quantum efficiency optimization of InP-based InO. 53GaO. 47As photodetectors[J]. J. Infrared Millim. Waves(田招兵,顾溢, 张永刚. InP 基 InO. 53GaO. 47As 光电探测器的量子效率 优化. 红外与毫米波学报),2008,27(2):81—85.
- [10] LIU Yu-Dong, ZHANG Gang, CUI Jian-Guo, et al. Effects of texture on the shear strength of In bump[J]. J. Infrared Millim. Waves(刘豫东,张钢,崔建国,等. 织构对铟凸点 剪切强度的影响. 红外与毫米波学报),2004,23(3): 225-228.

⁽上接197页)