文章编号:1001-9014(2006)05-0338-04

基于 PPMgLN 晶体的红外光参量振荡器研究

蔡双双¹, 吴 波¹, 徐海斌², 沈剑威¹, 沈永行³ (1. 浙江大学物理系,浙江 杭州 310027;2. 浙江湖州师范学院物理系,浙江 湖州 313000; 3. 浙江大学光电信息工程学系,浙江 杭州 310027)

摘要:采用高压电脉冲触发反转技术自行制备了 PPMgLN 晶片作为非线性工作介质,实现了一台以工作波长为 1.064μm的被动调 Q Nd:YVO4 激光器作为泵源,输出信号光波长在 1.4 μm ~ 1.7 μm 的光参量振荡器.采用畴周 期调谐和温度调谐相结合实现了输出信号光波长在 1.425 μm ~ 1.69 μm 波段的连续调谐.在泵浦功率为 8.66W, 调 Q 频率为 20 KHz 时得到输出信号光和闲散光总功率为 2.07W,斜率效率达到 30.7%. 关键 词:光参量振荡器;周期性畴极化反转;掺镁铌酸锂;调谐 中图分类号:0437.4 文献标识码:A

STUDY ON INFRARED OPTICAL PARAMETRIC OSCILLATOR BASED ON PPMgLN

CAI Shuang-Shuang¹, WU Bo¹, XU Hai-Bin², SHEN Jian-Wei¹, SHEN Yong-Hang³

(1. Department of Physics, Zhejiang University, Hangzhou 310027, China;

2. Department of Physics, Huzhou Teachers College, Huzhou 313000, China;

3. Department of Optical Engineering & Information Science, Zhejiang University, Hangzhou 310027, China)

Abstract: Optical parametric oscillator(OPO) based on PPMgLN, which was made by high voltage pulse trigging technology, was fabricated. The OPO is pumped by a passively Q-switched Nd: YVO_4 laser working at 1.064 μ m. The output signal wavelength can be continuously tuned from 1.425 μ m to 1.69 μ m by means of domain-period tuning together with temperature tuning. An average total signal and idler output power of 2.07W is obtained when the pump power is 8.66W, and the slope efficiency is 30.7%.

Key words: optical parametric oscillator; periodically poled; MgO doped LiNbO3; tuning

引言

1962年,诺贝尔物理学奖获得者 Bloembergen 和 Armstrong 等人提出了准相位匹配理论(Quasi Phase Match,QPM)^[1],通过对光学晶体材料极化率 的周期性调制来补偿光频转换过程中由于折射率色 散所造成的泵浦光与信号光之间的相位失配,可以 有效地提高非线性光频转换效率. 铌酸锂晶体由于 在 d_{33} 方向具有大的非线性系数(27 pm/v)和宽的透 光范围(0.35 μ m ~5 μ m),因此周期性畴极化反转 的铌酸锂晶体(periodically poled LiNbO₃,PPLN)成 为比较适合光参量振荡器(optical parametric oscillator,OPO)应用的非线性光学介质.

但是,常规无掺杂的铌酸锂晶体的扭顽场高达

21 kv/mm^[2],制备大厚度的 PPLN 晶片比较困难;同 时,由于 PPLN 晶片在常温下抗光损伤阈值较低,需 要加热到 120 ℃以上^[3]才能有效地实现光频转换, 这些因素均在一定程度上制约了 PPLN 在实用型 OPO 上的应用,特别是在大功率 OPO 上的应用.为 了解决这些问题,进一步的研究发现在铌酸锂中掺 人适量的 MgO 可以极大地降低其扭顽场(掺 MgO 浓度为 5mol% 的铌酸锂晶体 25 ℃时扭顽场约为 4.5 kV/mm^[2]),使得制备较大厚度的周期性畴极 化反转的掺镁铌酸锂(periodically poled MgO doped LiNbO₃, PPMgLN)器件成为可能;而且还可以有效 地提高材料的抗光损伤能力,掺 5mol% MgO 铌酸 锂晶体抗光损伤阈值比常规无掺杂的铌酸锂晶体提 高了接近 100 倍^[4],在常温下就可实现非线性光频

收稿日期:2005 - 11 - 23,修回日期:2006 - 05 - 27

Received date: 2005 - 11 - 23, revised date: 2006 - 05 - 27

基金项目:国防科技重点实验室基金项目(514720105-04JW0401);浙江省科技厅重点科技计划项目(2005C21034)

作者简介:蔡双双(1981-),女,浙江温州人,浙江大学博士研究生,主要从事周期性畴极化反转铌酸锂材料的制备及光参量振荡器方面的研究.

转换.因此, PPMgLN 在大功率光频转换方面是比 PPLN 更理想的非线性光学材料.国内在 PPMgLN 及 PPLN 晶片的制备上也做了很多工作,目前已有了 一些比较好的报道^[5-7].

基于 PPMgLN 晶体的红外光参量振荡器,特别 是大功率的 OPO,在很多领域都有很好的应用前 景,如激光大气雷达、激光制导等方面.本文采用自 行制备的 PPMgLN 晶片,利用畴周期调谐和温度调 谐,实现了输出信号光波长在 1.425 μm ~ 1.69 μm 波段连续可调的红外光参量振荡器.

1 实验装置

光参量振荡器的结构原理如图 1 所示. 泵源为 一被动调 Q 的 Nd: YVO₄ 激光器,输出波长 1.064 μm. 实验中泵浦光经一焦距为 300 mm 的长焦透镜 Lens 耦合后聚焦到 PPMgLN 晶片上. 光参量振荡器 谐振腔由两平面镜 M1、M2 组成,平面镜的基底材料 皆为 CaF2 晶体.

为了实现光参量振荡,对谐振腔两腔镜有较高 的镀膜要求.如图 2 所示,输入镜 M1 直径为 25.4 mm,B 面对 1.064 μ m 波段高透(T > 90 % at 1.064 μ m),A 面对 1.4 μ m ~ 1.7 μ m 波段高反(R > 98 %)、2.9 μ m ~ 4.4 μ m 波段高反(R > 95 %);输出 镜 M2 直径为 25.4 mm,A 面对 1.4 μ m ~ 1.7 μ m 波 段高反(R > 95 %),对 2.9 μ m ~ 4.4 μ m 波段 R > 90%;B 面不镀膜.

实验中所用的 PPMgLN 晶片是利用高压电脉冲 触发反转技术自行制备的,制备过程在文献 [5]中

图 1 光参量振荡器结构原理图. M1, M2: 两平面 腔镜

Fig. 1 Experimental setup of the PPMgLN OPO. M1, M2: flat cavity mirrors

图 2 平面腔镜示意图 Fig. 2 Schematic flat mirrors for OPO

图 3 氢氟酸腐蚀后的 PPMgLN 晶片 + Z 面极化 反转畴

Fig. 3 Optical microscopic image of etched domaininverted structrures on + Z surface of PPMgLN

有具体介绍. 晶片掺 MgO 浓度为 5mol%;晶片长 37 mm,宽 10 mm,厚 1mm;两端面抛光后对 1.064μm, 1.4 μm~1.7 μm 和 2.9 μm~4.4 μm 波段镀增透 膜. 整个晶片上共有 20 个通道,相邻两通道畴周期 大小相差 0.2 μm,畴周期范围从 27.8 μm 到 31.6 μm. 图 3 为在显微镜下观察到的经氢氟酸腐蚀后的 PPMgLN 晶片 + Z 面周期性极化反转畴结构. 由图 3 可知所制备的 PPMgLN 晶片极化反转畴很整齐,畴 占空比接近 1:1,晶片质量满足作为光参量振荡器 非线性工作介质的要求.

2 调谐特性研究

在光参量作用过程中,不同频率的光子间要满 足能量守恒条件:

 $\omega_{\rm p} = \omega_{\rm s} + \omega_{\rm i} \quad , \tag{1}$

式中 ω_{p} 、 ω_{s} 、 ω_{i} 分别表示泵浦光、信号光及闲散光的 角频率.为了能达到比较高的转换效率,泵浦光、信 号光和闲散光三者之间还必须满足准相位匹配条 件:

 $\Delta k = k_p - k_s - k_i - k_m = 0 \quad , \qquad (2)$

式中 $k_m = \frac{2\pi m}{\Lambda}$, Λ 为 PPMgLN 晶片的畴周期长度, m 为准相位匹配阶数. m 可取 1、3、5、7 等奇数. 为了得 到比较高的转换效率, 所制备的 PPMgLN 晶片满足 的是一阶准相位匹配条件, 即 m = 1. 由式(1)、式(2)可知在温度、泵浦光波长一定的情况下, 不同的 畴周期对应于不同的输出信号光和闲散光波长. 因 此改变畴周期大小可方便地实现输出信号光和闲散 光波长在较宽波段范围内的调谐, 图 4 所示为理论 模拟的 25 ℃温度下的畴周期调谐曲线. 掺镁铌酸锂晶体在不同温度下 e 光的折射率可 用如下的 Sellmeier 方程来表示^[8]:

$$n_e^2 = A + \frac{B}{\lambda^2 - C} - D\lambda^2 \quad , \tag{3}$$

式中 A、B、C、D 为常数,不同温度下取不同值,式中 波长单位取 μm.由于折射率随温度的变化以及材 料的热膨胀,改变光参量振荡器的工作温度也可以 实现信号光和闲散光波长的调谐,但是只能实现小 范围内的调谐.通过拟合不同温度下的 A,B,C,D 系 数,得到了如图 5 所示畴周期为 31.6μm 时的温度 调谐曲线.

3 实验结果

实验中通过在图 1 所示的 y 方向上平移 PPMgLN 晶片使泵浦光聚焦在不同通道上来实现畴 周期调谐.由于晶片的畴周期在制备过程中是不连 续变化的,无法通过改变畴周期实现连续调谐.为了

图 4 理论模拟的畴周期调谐曲线 Fig. 4 Domain-period tuning curve by theory

图 5 理论模拟的温度调谐曲线 Fig. 5 Temperature tuning curve with domain period of 31.6µm by theory

实现光参量振荡器在 1.064 μm 波长泵浦,在 1.4 μm ~1.7 μm 波段的连续可调,实验中采用畴周期 调谐和温度调谐相结合的方法,由温度调谐来弥补 畴周期调谐中输出波长的不连续,实现输出信号光 在较宽波长范围内的连续可调,通过平移 PPMgLN 晶片使泵浦光聚焦在不同的通道上,实现了输出信 号光波长在 1.425 μm ~1.690 μm 范围内的调谐, 如图 6 所示.图中对应闲散光波长是根据式(1)由 能量守恒关系计算得到的,波长范围为 2.87 μm ~ 4.2μm.图 7 为在某一固定畴周期下的温度调谐曲 线.由图 7 可看出温度调谐对畴周期调谐能起到很 好的补充作用.

目前在泵浦功率为 8.66W, 调 Q 频率为 20kHz 时,输出信号光和闲散光总功率最高可达 2.07W, 斜率效率可达 30.7%, 如图 8 所示.整个系统的阈 值为 2.22W. 用光谱分析仪记录的信号光波长为 1426nm 时的输出光谱如图 9 所示.输出光束质量比 较理想,基本为基模输出.

图 6 实验得到的畴周期调谐曲线 Fig. 6 Domain-period tuning curve by experiment

图 7 实验得到的温度调谐曲线

图 8 输出功率与输入功率关系 Fig. 8 The dependence of output power on the input power

图 9 波长为 1426nm 的输出信号光光谱 Fig. 9 Spectrum of output signal at 1559nm

4 结论

采用自行研制的 PPMgLN 晶片作为非线性工作 介质,实现了信号光波段为 1.4 μm ~1.7 μm,闲散 光波段为 2.9 μm ~4.4 μm 的红外光参量振荡器.

本系统采用的腔结构比较简单,但已经得到了 非常理想的实验结果,包括较大的输出功率和光光 转换效率,说明所制备的 PPMgLN 晶片已经具备较 高的光学品质,占空比较为理想,适合于大功率光参 量振荡器应用.由于目前所用的光参量振荡器实验 配置尚未经过优化,可以预期经过进一步的优化后, 其非线性转换效率、输出功率都会得到进一步提高. 并在不远的将来有望实现商品化.

REFERENCES

- [1] ARMSTRONG J A , Bloembergen N, Ducuing, et al. Interactions between light waves in a NonlInear dielec-tric [J]. *Physical Review*, 1962, 127(6):1918-1939.
- [2] Hideki, Ishizuik, IchiroShoij, et al. Periodical poled characteristics of congruent MgO: LiNbO₃ crystals [J]. Applied Physics Letters, 2003,82(23):4062-4064.
- [3] ZHANG Bai-Gang, YAO Jian-Quan, ZHANG Hao, et al. Temperature tunable infrared optical parametric oscillator with periodically poled LiNbO₃[J]. Chinese Physics Letters, 2003,20(7):1077-1080.
- [4] Atsuko Kuroda, Sunao Kurimura, Yoshiaki Uesu. Domain inversion in ferroelectric MgO: LiNbO, by applying electric field [J]. Applied Physics Letters, 1996, 69 (11): 1565-1567.
- [5] XU Hai Bin, WU Bo, YE Lin Hua, et al. Fabrication of homogenious poled PPLN wafer with multi-periods and large scale[J]. Journal of Functional Materials and Devices (徐 海滨,吴波,叶林华,等. 多周期大尺寸均匀极化 PPLN 晶 片的制备. 功能材料与器件学报),2004,10(1):98— 102.
- [6] CHEN Yun-Lin, LUO Yong-Feng, GUO Juan, et al. Theoretical research of quasi-phase-matched all-optical wavelength conversion in LiNbO₃ waveguide [J]. J. Infrared Millim. Waves (陈云琳,罗勇锋,郭娟,等. 准相位匹配 LiNbO₃ 波导全光波长变换的理论研究. 红外与毫米波学 报),2004,23(5):367—370.
- [7] YAN Bo-Xia, YAO Jian-Hong, CHEN Ya-Hui, et al. Study on periodically poled characteristics of MgO: LiNbO3 and second harmonic green light generation [J]. J. Infrared Millim. Waves (颜博霞,姚江宏,陈亚辉,等. 高掺镁铌酸 锂晶体周期极化及倍频特性研究. 红外与毫米波学报), 2005,24(3):213-216.
- [8] Shen H Y, Xu H, Zeng Z D, et al. Measurement of refractive indices and thermal refractive-index coefficients of LiNbO₃ crystal doped with 5 mol% MgO[J]. Applied Optics, 1992, 31:6695-6697.