文章编号:1001-9014(2005)06-0405-04

$Pb(Zr_{0.3}Ti_{0.7})O_3$ 热释电薄膜材料研究

钟朝位1, 汪红兵2, 彭家根1,3, 张树人1, 张万里1

(1. 电子科技大学 微电子与固体电子学院,四川 成都 610054;

2. 四川压电与声光技术研究所,重庆 400060;

3. 中国工程物理研究院 电子工程研究所,四川 绵阳 621900)

摘要:利用射频磁控溅射法对 0.8Pb(Zr_{0.3}Ti_{0.7})O₃+0.2PbO 的陶瓷靶进行溅射,在 5 英寸的 TiO_x/Pt/Ti/SiO₂/Si 基片 上制备出了 PZT 薄膜.实验表明,PZT 薄膜的取向由(111)到(100)的改变可以通过精确控制基片温度来实现.(111) 取向的薄膜具有良好的介电、铁电和热释电性能,其剩余极化强度、介电常数、介电损耗、矫顽场和热释电系数分别为 20μC/cm²,370,1.5%,130kV/cm 和 1.1×10⁻⁸C/cm²K,该薄膜可望在非制冷红外焦平面探测器阵列中得到应用. 关键 词:PZT 薄膜;射频磁控溅射;非制冷红外焦平面;探测器阵列 中图分类号:TB39;0484 文献标识码:A

INVESTIGATION ON Pb($Zr_{0.3}$ Ti_{0.7}) O₃ PYROELECTRIC THIN FILM MATERIALS

ZHONG Chao-Wei¹, WANG Hong-Bing², PENG Jia-Gen^{1,3}, ZHANG Shu-Ren¹, ZHANG Wang-Li¹

(1. School of Microelectronics and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China;

2. Sichuan Institute of Piezoelectric and Acoustooptic Technology, Chongqing 400060, China;

3. Institution of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900, China)

Abstract: Lead zirconate titanate thin films were successfully prepared on 5-inch $TiO_x/Pt/Ti/SiO_2/Si$ substrates by RF-Magnetron Sputtering method. The experimental results show that the orientation of PZT thin films can be changed from (111) to (100) by precisely controlling the substrate temperature. The (111)-oriented films with thickness of 500nm have the remanent polarization of $20\mu C/cm^2$, dielectric constant of 370, dielectric loss of 1.5%, coercive field of 130 kV/cm and pyroelectric coefficient of $1.1 \times 10^{-8} C/cm^2 K$. The films can be used for fabricating uncooled infrared focal plane detector arrays.

Key words: lead zirconate titanate films; RF-magnetron sputtering; uncooled infrared focal plane; detector arrays

引言

富钛的 PZT 薄膜具有较高的热释电系数、电光 系数以及较低的介电常数,作为非制冷红外焦平面 探测器阵列用材料而备受关注^[1,2].最近,在隔热结 构上以薄膜电容的形式制作出了阵列.现在 PZT 薄 膜的制备方法较多,如溅射法^[3~6],溶胶 – 凝胶 法^[7,8],金属有机化学气相沉积法^[9,10],激光闪蒸 法^[11,12]等.在这些薄膜制备方法中,由于射频磁控 溅射法制备薄膜工艺过程简单,因此得到了广泛的 应用.要研制出高性能的热释电红外探测器阵列,关 键技术之一是高性能 PZT 薄膜的制备. 众所周知, 在 PZT 体系中,直接在硅基片上制备 PZT 薄膜难以 避免界面间的反应,因为铅很容易与硅反应而扩散 到基片中,因此一般在 PZT 薄膜与硅基片间沉积一 层缓冲层.本文采用射频磁控溅射法在 Pt/Ti/SiO₂/ Si 衬底上制备 PZT 薄膜,在 PZT 薄膜与衬底间沉积 一层 TiO_x,研究其结晶和热释电性能.

1 实验

PZT 薄膜采用 ULVAC 公司生产的 MPS-500-FCI 铁电薄膜溅射系统来制备, 靶是直径为(50.8

Received date: 2004 - 12 - 06, revised date: 2005 - 05 - 20

收稿日期:2004 - 12 - 06,修回日期:2005 - 05 - 20 基金项目:国家九七三重大基础研究(51310204)资助项目

作者简介:钟朝位,(1966-),男,江西南康人,教授级高工,主要从事电子陶瓷材料研究.

mm PZT 陶瓷靶, 成分为 0. 8Pb($Zr_{0.3}Ti_{0.7}$) O₃ + 0.2 PbO,采用传统的固相反应法制备, 原材料为 TiO₂ (99.95%), PbO(99.95%) 和 ZrO₂(99.95%). 基 片采用直径为 5 英寸的(100)单晶硅片, 表面 SiO₂ 层的厚度约为 500nm. Pt 电极采用直流溅射法在基 片温度为 400℃、纯氩气氛下制备, 为了增加 Pt 层在 基片上的附着性, 沉积 Pt 前先沉积一层 Ti, Pt/Ti 层 的厚度大约为 150nm. 经 XRD 分析, Pt 薄膜为高度 (111)择优取向的薄膜. TiO_x 层是在 Ar/O₂ 为 8/2 的气氛条件下制备. PZT 薄膜的制备条件见表 1.

薄膜的织构采用 Bede D1 多功能 X 射线衍射仪进行 分析.为了表征薄膜的介电和铁电性能,薄膜退火后 采用掩膜溅射直径为 0.3mm 的 Pt 上电极.薄膜的 介电和铁电性能测试分别采用 HP4278A 测试仪和 Precision LC 标准铁电测试系统.样品在测试电滞回 线后,利用变温动态测试系统测量薄膜电压-温度响 应曲线来获得薄膜的热释电系数.

2 结果与讨论

2.1 Pb(Zr_{0.3}Ti_{0.7})O₃ 薄膜的结晶性

表1 PZT 薄膜的沉积条件

Table 1	Sputtering	deposition	parameters	of	PZT	films
---------	------------	------------	------------	----	-----	-------

基片	$TiO_x/Pt/Ti/SiO_2/Si(100)$			
基片尺寸	5 英寸			
靶材	$0.8Pb(Zr_{0.3}Ti_{0.7})O_3 + 0.2PbO$			
射频功率	60w			
工作气压	0.2Pa			
溅射气体	$Ar/O_2(8/2)$			
基片温度	25℃、200℃和500℃			
薄膜厚度	500nm			

图 1 PZT 薄膜在不同基片温度下的 XRD 图 (a) 25℃ (b) 200℃ (c) 500℃

Fig. 1 XRD patterns of PZT films deposited at different substrate temperatures (a) 25° (b) 200° (c) 500°

图1给出了沉积 TiO_x 缓冲层后在不同的基片 温度下制备的 PZT 薄膜的 XRD 图. 基片温度分别是 (a) 25℃, (b) 200℃和(C) 500℃. 它们都经历了 650℃/60s 的退火处理. 从图中可以看出在三种温 度下沉积的薄膜退火后都没有出现焦绿石相的峰, 形成了单一钙钛矿结构. 基片温度由 25℃ 增加到 500℃,PZT 薄膜由(111)取向变化为(100)取向. 通 常情况下,PZT 薄膜直接在(111) 取向的 Pt 上生长 会得到高度(111)取向的薄膜,这是因为 Pt 的 (111) 晶面与 PZT 的(111) 晶面间有最小的面间距 失配,当 PZT 在(111) Pt 上异质成核时,(111) 面的 成核能最低^[12]. 但在我们的实验中,并非所有的薄 膜都为(111)取向,如薄膜(c)为(100)取向.这可能 与缓冲层 TiO, 有关. TiO, 层随着温度的增加由无定 形向金红石结构演变.在25℃和200℃,TiO、为无定 形结构,容易与铅结合,从而有利于 PZT 在(111) Pt 上成核.因此薄膜(a)和(b)表现为(111)择优取向. 但是对于 PZT 的晶面能来说,(100)面具有最低的 激活能.在500℃时(200)取向的TiO2可能形成,由 于 PZT(100) 晶面与 TiO₂(200) 晶面晶格结构相匹 配,晶格常数相近,失配度小,因此在这种情况下, PZT 薄膜沿(100) 面成核的势垒最小,生长速率会 比沿其它晶面的要快,薄膜表现为(100)择优取向. 由此可以看出,基片温度的控制是非常重要的.

2.2 Pb(Zr_{0.3}Ti_{0.7})O₃ 薄膜的介电和铁电性

图 2 给出了三种基片温度下的 PZT 薄膜的电 滞回线:(a)25℃,(b)200℃和(C)500℃.从图中可 以看出薄膜的电滞回线的形状、极化值和矫顽场有 一定的差别.薄膜(a)和(b)表现出较大的剩余极化 值,并且矩形度较好,其中薄膜(a)的剩余极化值最 大,达到 20μC/cm²,表现出最好的铁电性能.薄膜 (c)的矩形度差,并且电滞回线的振幅以及在 Y 轴 上的截距最小,表明薄膜的铁电性最差.表 2 给出了 三种基片温度下薄膜的介电、铁电和热释电性能.从 表 2 中的数据也可以看出薄膜(a)具有最好的铁电 性能.

由于 Pb(Zr_{0.3}Ti_{0.7})O₃ 在富钛的区域,属于四方 结构,它的自发极化的方向在[001]方向上,因此希 望所制备的薄膜为(001)取向.但是由于应力补偿 的原因,在硅基片上制备(001)取向的薄膜是非常 困难的.图3给出了薄膜的取向与自发极化的关系. 从图3(a)中可以看出,当薄膜为(111)取向时, (001)方向的线段 OA 代表自发极化 Ps,它在(111) 方向上的投影为线段 OB,代表剩余极化 Pr,OB/OA

图 2 PZT 薄膜在不同基片温度下的电滞回线 (a) 25℃ (b) 200℃ (c) 500℃. Fig. 2 Hysteresis loops of PZT films deposited at differ-

ent substrate temperatures (a) 25° C (b) 200° C (c) 500° C

大约为58%,即在理想情况下,(111)取向的薄膜的 Pr/Ps为58%.从图3(b)中可以看出,在(100)取向 的情况下,[001]方向与[100]方向垂直,因此Ps在 [100]方向的分量为0.同时,外场较难将这种90°畴 转向,因此(111)取向的薄膜的铁电性好于(100)取 向的铁电性.

从表2中可以发现,在(111)取向情况下 Pr/Ps 大约为0.52,这个值小于理论值0.58.这可能与薄 膜中存在的缺陷有关.这些缺陷,如氧空位可能会钉 扎畴壁而阻碍了电畴的转向.此外,实验中所制备的 薄膜虽然具有一定的外延性,但是仍然是一种具有

图 3 取向与极化的关系

(a) (111) 取向 (b) (100) 取向

Fig. 3 The relationship of polarization and orientation

(a) (111) orientation (b) (100) orientation

一定织构的多晶薄膜,而扫描探针显微镜检测又表 明其晶粒较大,为120nm 左右,因此薄膜的电畴处 于多畴结构状态,包括90°畴和180°畴.180°畴在外 电场的作用下容易转向,并与外电场方向一致,而 90°畴由于应力等因素,在外电场的作用下转向困 难,只有在较大的外电场下才能取向于外电场方向. 当撤消外电场后,180°畴基本能继续处于原外电场 方向,而90°畴则很容易回复到原取向,即Pr主要是 由180°畴贡献,最终使得 Pr/Ps 值的降低.

从表 2 的数据中还可以看出,(111)取向的薄 膜具有最低的介电常数,(100)取向的薄膜有最高 的介电常数,这与先前的文献[4,13,16]报道是一 致的,低介电常数薄膜材料有利于探测器件探测率 的提高.

2.3 Pb(Zr_{0.3}Ti_{0.7})O₃ 薄膜的热释电性

热释电探测器非常重要的一个性能是薄膜随温 度变化的动态热释电响应.为了说明薄膜在红外探 测器方面具有潜在的应用,薄膜随温度变化的动态 热释电电压响应曲线由图4给出.图中曲线(a)表 示 PZT 薄膜的响应电压曲线,曲线(b)是程序设定 的温度变化,按照正弦规律变化,曲线(c)是传感器 测量的薄膜上的温度变化.薄膜的热释电系数可以 由薄膜的电压输出响应公式 $V = RAp\omega\Delta T \cos(\omega t)$ 计 算出,其中 R、A、p、 ω 和 ΔT 分别表示标准电阻、上 电极的面积、热释电系数、温度变化的角频率和温度 变化的振幅.计算结果表明,对于(111)取向的薄 膜,其热释电系数达到了 11nC/cm²K.

4 结论

采用射频磁控溅射法在 5 英寸的 TiO_x/Pt/Ti/SiO₂/Si上成功地制备出了 Pb(Zr_{0.3}Ti_{0.7})O₃ 薄膜. 实验结果表明 PZT 薄膜的取向由(111)到(100)的 改变可以通过精确控制基片温度来实现.动态法测 试(111)取向的 PZT 薄膜的热释电系数大于1.0× 10⁻⁸C/cm²K.该薄膜可望在非制冷红外焦平面探测 器中得到应用.

Table	2 Dielectric	, ferroelectric and	pyroelectric propert	ties of PZ	f films	deposited	on	TiO _x /Pt/	$Ti/SiO_2/$	Si at	t various
AX 4	121 冲肤红1		1.92.00.000							(Ct - 4	

玉砧云山 建由和林野由性能

	substrate	temperatures						
薄膜	Ts (°C)	取向	ε	tgδ (%)	P_s ($\mu C/cm^2$)	P_r (μ C/cm ²)	<i>E</i> _c (kV/cm)	p (<u>nC/cm²K</u>)
a	25	(111)	370	1.5	39	20	130	11.0
b	200	(111)主要 (100)次要	418	2.4	35	15	114	9.8
c	500	(100)	451	2.6	19	8	119	5.2

图 4 PZT 薄膜的动态热释电电压响应曲线(25℃) Fig. 4 The dynamic pyroelectric voltage response vs temperature of the PZT films deposited at 25℃

REFERENCES

- [1] Yamakawa K, Trolier-McKinstry S, Dougherty J P. Preparation of lead zirconate titanate thin films by reactive magnetron co-sputtering [J]. *Materials Letters*, 1996, 28: 317-322.
- [2] Suyal G, Setter N. Enhanced performance of pyroelectric microsensors through the introduction of nanoporosity [J]. Journal of the European Ceramic Society, 2004, 24: 247-281.
- [3] Vélu G, Rèmiens G. Electrical properties of sputtered PZT films on stabilized platinum electrode [J]. Journal of the European Ceramic Society, 1999, 19: 2005-2013.
- [4] Bouregba R, Poullain G, Vilquin B, et al. Orientation control of textured PZT thin films sputtered on silicon substrate with TiO_x seeding [J]. Materials Research Bulletin, 2000, 35: 1381–1390.
- [5] Chang C C, Tang C S. Preparation and properties of leadzirconate-titanate ferroelectric thin films using radio frequency planar magnetron sputtering [J]. Journal of applied physics, 2000, 87: 3931-3936.
- [6] LI Xin-Xi, LAI Zhen-Quan, WANG Gen-Shui, et al. Influence of deposition power on the composition, structure and properties of PZT thin films prepared by RF sputtering [J]. J. Infrared Millim. Waves (李新曦,赖珍荃,王根水,等. 溅射沉积功率对 PZT 薄膜的组分、结构和性能的影响.

红外与毫米波学报), 2004,23(4):313---316.

- [7] Al-Shareef H N, Bellur K R, Auciello O. Phase evolution and annealing effects on the electrical properties of Pb (Zr_{0.53}Ti_{0.47})O₃ thin films with RuO₂ electrodes [J]. Thin Solid Films, 1995, 256: 73-79.
- [8] Ko J S, Liu W G, Zhu W G. Substrate effects on the properties of the pyroelectric thin film IR detectors [J]. Sensors and Actuators A, 2001, 93: 117-122.
- [9] Okamura S, Abe N, Otani Y, et al. Influence of Pt/TiO₂ bottom electrodes on the properties of ferroelectric Pb (Zr, Ti)O₃ thin films [J]. Integrated Ferroelectrics, 2003, 52: 127-136.
- [10] Roeder J F, Chen I-S, Van Buskirk P C, et al. Dielectric and pyroelectric properties of thin film PZT [J]. IEEE International Symposium on Applications of Ferroelectrics, 1998,8: 217-220.
- [11] Kurogi H, Yamagata Y, Ebihara K, et al. Preparation of PZT thin films on YBCO electrodes by KrF excimer laser ablation technique [J]. Surface and Coatings Technology, 1998, 100-101: 424-427.
- [12] Yang C T, Liu J S, Zhang S R, et al. Characterization of Pb(Zr,Ti)O₃ thin film prepared by pulsed laser deposition
 [J]. Materials Science and Engineering, 2003, B99: 356-359.
- [13] Bao D H, Yao X, Shinozaki K, et al. Growth and electrical properties of Pb(Zr,Ti)O₃ thin films by a chemical solution deposition method using zirconyl heptanoate as zirconium source [J]. Journal of Crystal Growth, 2003, 259: 352-357.
- [14] Kim S H, Park D Y, Woo H J, et al. Orientation effects in chemical solution derived Pb(Zr_{0.3}, Ti_{0.7}) O₃ thin films on ferroelectric properties [J]. Thin Solid Films, 2002, 416: 264-270.
- [15] Okamura S, Abe N, Otani Y, et al. Influence of Pt/TiO₂ bottom electrodes on the properties of ferroelectric Pb(Zr, Ti)O₃ thin films [J]. Integrated Ferroelectrics, 2003, 52: 127-136.
- [16] Lee J Y, Lee B S. Orientation control and electrical properties of sputtered Pb(Zr, Ti)O₃ films [J]. Materials Science and Engineering, 2001, B79: 86-89.