文章编号:1001-9014(2004)02-0148-05

一种舰船红外特征的动态模拟方法研究

寇 蔚,杨 立,孙丰瑞

(海军工程大学船舶与动力工程学院,湖北 武汉 430033)

摘要:研究了舰船红外特征的实时动态模拟,在单个面元模型的基础上利用状态空间法的思想对面元进一步分层, 建立了面元的多层传热模型,并采用面向对象方法的技术进行了编程,给出了较为简捷、计算精度较高的计算方 法,模拟的舰船表面瞬时温度随时间的变化与实测结果一致,能满足实时动态模拟的需要.这对提高舰船的红外对 抗能力和生存能力等都有重要意义,对舰船的红外隐身设计也有一定的指导意义.

关 键 词:舰船;红外特征;动态模拟;瞬时温度

中图分类号:TN11 文献标识码:A

STUDY ON A TRANSIENT SIMULATION OF THE INFRARED (IR) SIGNATURE OF THE NAVAL VESSELS

KOU Wei, YANG Li, SUN Feng-Rui

(Academy of Ship and Power Engineering, Naval University of Engineering, Wuhan 430033, China)

Abstract The real-time simulation of the infrared (IR) signature for the naval vessels is studied. Based on the single-element method (SEM) and the status-space method (SSM), the block is separated into several layers. A simple and convenient calculation method is offered, and the result of the simulation is satisfying. This method is not only helpful to the enhancement of the capability of infrared countermeasure and the subsistence of the naval vassels, but also to the concealment design.

Key words naval vessels; infrared (IR) signature; transient simulation; instant temperature

引言

20世纪80年代以来, 红外搜索、跟踪系统和装 有红外成像制导的反舰导弹有了很快的发展.由于 红外搜索与跟踪系统可以在能见度很差甚至夜间条 件下, 被动地对舰船目标进行探测、识别和跟踪, 装 有被动红外成像制导的导弹比过去跟踪"热点"的 红外导弹有更高的探测率和抗干扰能力. 舰船的红 外辐射情况随着不断变化的天气、海况、舰船速度、 航向条件而相应地发生着改变. 太阳、天空、海水和 大气的辐射相互耦合, 时刻变化, 舰船接收到的太阳 的辐射还与当时的时刻, 舰船所处地理位置、朝向等 都有关系, 因此更加需要进行实时计算. 因此, 进行 舰船红外特征的实时动态模拟对预测舰船自身的红 外特征, 分析敌方红外制导导弹的灵敏度和锁定距 离以及采用红外隐身措施后的效果具有较强的实用 意义.

在国外,有关这方面的研究开展较早,并已取得 了积极的进展.九十年代以来,美国的 ERIM(Environmental Research Institute of Michigan)已经将海洋 背景和目标放在一起,建立了极为精确的红外模拟 方法,称为"船只和海洋表面图像模拟包"(SOSIS). 1999 年 2 月,加拿大的 DAVIS 工程公司(W R Davis Eng. Ltd)发布了他们与美国 NRL(National Research Lab)一起开发的舰船红外特征管理软件(v2. 5).该软件功能强大,已成为北约的舰船红外特征 管理标准和美国海军"21 世纪驱逐舰计划(DD-21)"的一个内嵌程序.

但在国内,这方面工作开展的并不多.上海交通 大学从二十世纪80年代末开展了红外抑制装置研

Received date: 2002 - 12 - 17, revised date: 2003 - 07 - 11

基金项目:海军工程大学科研基金资助项目(HGDJJ9807)

作者简介:寇蔚(1977-),男,河北冀县人,博士生.主要从事传热反问题和红外目标特征模拟研究.

收稿日期:2002-12-17,修回日期:2003-07-11

图1 舰船示意图

Fig. 1 Sketch map of the naval vessel

究,1992 年以来还开展了舰船红外理论建模工作, 主要是用划分网格进行数值计算并用计算机显示出 舰船表面的温度分布情况,但大部分工作都是关于 静态(热平衡态)时舰船表面温度分布,虽然也曾根 据 SEM(Single Element Method)方法对舰船进行过 动态模拟,但是其深入程度还不够,计算精度还不能 达到实时模拟的要求.^[1-10]

本文着重研究舰船红外特征的动态实时模拟方 法,在 SEM 方法的基础上利用状态空间法的思想对 面元进一步分层,建立面元的多层传热模型,并采用 面向对象方法的技术进行编程,得到了较为简捷、计 算精度较高的计算方法,可模拟舰船在任何时刻、地 理位置、航速、航向、风速等情况下的表面瞬时温度 和红外特征.

1 传热模型

对于舰船表层,如图1所示,可以根据舱室分成 不同朝向(Orient)如上、左、右、前、后的很多块(或 称面元).对每一面元,建立传热模型,计算出每一 块面元温度后,即可求出舰船左、右舷的平均温度. 对每一块面元,其传热模型如图2所示.在图中,*G* 为面元出射的能流密度,*J*为投射到面元的能流密 度.由此可知外表面向外的有效投射为

$$J_{out} = G_0 + \rho_{out} J_0, \qquad (1)$$

其中, G_0 为面元外表面的向外的辐射能, J_0 为外界 投射到面元外表面上的能量, ρ_{out} 为面元外表面吸收 率.

$$G_0 = \varepsilon_{out} \sigma T^4_{out}, \qquad (2)$$

 ε_{out} 为面元外表面辐射率, T_{out} 为面元外表面温度, σ 为 Stefan Boltzman 常数. 投射辐射包括来自太阳、天空、海水和大气的辐射, 即:

 $J_0 = J_{sun} + J_{sky} + J_{sea} + J_{au}, \qquad (3)$ 面元外表面的对流换热为

$$A_{out} = H_{out} (T_{out} - T_{arr}), \qquad (4)$$

H_{out}为面元外表面对流换热系数, T_{air}为面元外侧大 气温度. 太阳、天空、海水和大气的辐射计算和对流

图 2 面元模型 Fig. 2 Model of the block

换热系数的选取比较复杂,有关它们具体的计算公 式可参考文献[11~13].需要指明的是,这几种辐 射相互耦合,时刻变化,舰船接收到的太阳的辐射还 与当时的时刻,舰船所处地理位置、朝向等都有关 系,因此更加需要进行实时计算.

对于面元内侧表面也可类似讨论,但具体情况 则要相对简单一些.

 $J_{in} = G_1 + \rho_{in} J_1, \qquad (5)$

$$G_1 = \varepsilon_{in} \sigma T^4_{in}, \qquad (6)$$

$$J_1 = J_{inner,aur} = \varepsilon_{inner,aur} \sigma T^4_{inner,aur}, \qquad (7)$$

$$A_{in} = H_{in} \left(T_{in} - T_{inner \, air} \right), \tag{8}$$

其中, G_1 为面元内表面的向外的辐射能, J_1 为外界 投射到面元内表面上的能量, ρ_{in} 为面元内表面吸收 率, ε_{in} 为面元内表面辐射率, T_{in} 为面元内表面温度, H_{in} 为面元内表面对流换热系数, $H_{inner,air}$ 为面元内侧 大气温度, $\varepsilon_{inner,air}$ 为面元内侧空气辐射率.

在本文的模型中,由于面元基本上是按照每个 舱室来划分的,尺寸相对来说比较大,同舷侧的受热 情况也基本相同(机舱部分的面元除外),因此忽略 了相邻块之间的热传导,机舱周围舱室的面元会比 其它舱室的面元温度高,其中的误差通过设定面元 内侧的空气的温度来减小;另外如果把一条舰船考 虑成一个长方体,由于舰船的辐射特征绝大部分都 是从船的四个侧面和上表面(烟囱和上层建筑、舰 舷、甲板)发射出来的,而烟囱和上层建筑、甲板对 舰舷的面元的辐射完全可以忽略.另外还忽略了烟 囱和上层建筑对甲板的辐射,这会在一定程度上影 响模拟的精度,但对舰船左、右弦平均温度影响较 小,同时这样一来,大大减少了计算工作量.

2 面元多层传热模型的建立

为了进一步提高面元温度的动态模拟的精度, 对面元进行分层,建立面元的多层传热模型.将每层 看成一个状态空间,即采用状态空间法进行动态模

图 3 面元的状态空间 Fig. 3 Status-space of the block

拟.动态的传热模型通常采用集总参数法,即把研究 对象看成一个整体,有统一的比热容和容积及温度 变化.对象吸收和放出热量后,温度即随时间发生变 化.这样的处理对简化模型、减小计算量有一定好 处,然而这种方法比较粗糙,精度也不高.

从另一角度来看, 传热问题也可以看成一个控制问题. 在本模型中, 控制量(输入参数) 是面元的 外部热流变化, 而受控量(输出参数) 则是面元的温 度变化. 因此, 可以考虑用控制理论来解决本题. 状态空间法是现代控制理论中较新的方法之一, 同传 统方法比较, 主要有以下优点: 1) 推导过程简单; 2) 推导的结果易于计算机实现; 3) 能方便地体现平壁 内部温度和热流随时间的变化; 4) 属于内部模型, 可以方便地知道各状态点的温度、热流变化, 从而可 以勾勒出平壁内部温度、热流随时间的变化情况. 利 用状态模型, 可以将矩阵理论中的一些方法, 用于分 析平壁热力系统的结构特性, 从而容易发现和导出 一些传统模型难以发现或导出的规律或特性, 用于 解决实际应用中碰到的一些问题.

对于平壁热力结构,为了建立状态空间,可将平 壁划分为一个 N 层的集中热容系统.如图 3 所示. 从而可建立起一个 N +1 维的状态空间.在图中阴 影部分分别表示内外边界及内部控制体.由能量守 恒可知,控制体的内能变化等于进出控制体热流量 的代数和,由此可以列出一组常微分方程,见式 (9).

$$\begin{cases} \frac{1}{2}C_{0} \frac{dT_{0}}{d\tau} = q_{0}(\tau) - \frac{T_{0} - T_{1}}{R_{0}}, \\ \frac{1}{2}(C_{0} + C_{1}) \frac{dT_{1}}{d\tau} = \frac{T_{0} - T_{1}}{R_{0}} - \frac{T_{1} - T_{2}}{R_{1}}, \\ \vdots \\ \frac{1}{2}(C_{k-1} + C_{k}) \frac{dT_{k}}{d\tau} = \frac{T_{k-1} - T_{k}}{R_{k-1}} - \frac{T_{k} - T_{k+1}}{R_{k}}, \\ \vdots \\ \frac{1}{2}C_{k-1} \frac{dT_{k}}{d\tau} = \frac{T_{k-1} - T_{k}}{R_{k-1}} - q_{1}(\tau). \end{cases}$$
(9)

图 4 舰船航行路线图

Fig. 4 Sea route of the naval vessel

式中 $C_k = l_k \rho_k c_{pk}$ 为第 $k \in k$ 层热容, $l_k \in k \in k$ 层厚度, ρ_k 为第 $k \in k$ 层密度, c_{pk} 为第 $k \in k$ 局的定压比热; $R_k = l_k / \lambda_k$ 为热阻, λ_k 为第 $k \in k$ 材料热导系数; $q_0(\tau)$, $q_1(\tau)$ 分 别为面元外侧和内侧的热流, 包括辐射和对流换热, 并有 $T_0 = T_{out}$, $T_n = T_{in}$.^[14]

在本文的计算中,内表面的过余温度已知,外表 面的的热流也已知.可将输入、输出关系整理成标准 的状态方程和输出方程.由方程组(9)可知,它是一 组一阶常微分方程,利用龙格-库塔法可以方便地对 它进行求解.

3 舰船温度的动态模拟计算

舰船的温度场归根到底是每个面元温度场的迭 加.每个面元都有不同的参数,但此时可以抽象出一 个类 CBlock,这个类用自己的内部成员如密度、长 度、宽度、厚度、热比容、内外两则的辐射率、导热系 数等来描述其性质,另外,把面元内外两则的对流换 热系数、面元内侧空气的性质如温度、发射率等也看 成面元的属性,类似地还可以将外部条件,舰船舱室 分布等抽象成不同的类,并采用面向对象方法(Object-Oriented,00)进行编程计算,这样可以大大简化 计算过程.00 方法虽然相应会降低一些算法的实现 效率,但由于现在计算机硬件技术的飞速发展,因此 对计算的速度的影响不大,而提高软件开发的效率 及可维护性反而已成为该类应用软件更应考虑的问题.

在文献[15]中报道了美国国家海洋系统中心 (NOSC)对舰船表面温度所做的实验评估.该实验 选择了一艘护卫舰,并对该舰的一段航程进行了舰 船表面温度的测量.选择的航程如图4所示.所测量 的左、右舷的平均温度变化对太阳辐射的响应如图 5 所示.

图 5 实测舰船的平均温度变化 Fig. 5 Average temperature of the real naval vessel

表 1 环境参数 Table 1 Environment parameters

参数	单位	FFG1
日期	/	1988年6月9日
风速	m∕s	3
风向	度	252
气温	K	293
温度	%	72
能见度	km	37
海水温度	<u> </u>	283

由于条件限制.本文没有进行实船测量,以对 该方法进行实验评估.但在本文的计算中,选择了一 条与该文献[15]中护卫舰基本上同一级别的某型 军舰.为进行比较,计算所选择的航程同文献[15] 中的一样,例如方向、速度、经度和纬度等,环境条件 也基本一样,如表1所列.某些具体数据文献中并没 有提及,所以会有些误差,但平均温度的总体变化趋 势与实测舰船平均温度基本一致,计算结果如图 6 所示.由计算与实测的结果可知,在舰船航速等参数

图6 本文的计算结果

Fig. 6 Average temperature of the simulation

基本不变的条件下,舰船的表面瞬时平均温度主要 与舰船的航向和太阳的加热量有关;太阳对舰船表 面加热大约 2h,面向太阳的舰船表面温度升高大约 4℃.由此可见,本文的计算方法在计算船体的瞬时 温度方面具有快速、能满足一定精度的优点,与已公 开的相似的舰船在相似环境下的实验结果比较,计 算结果与实验结果符合得较好.

4 结论

利用状态空间法的思想对面元进一步分层建立 的面元多层传热模型比单个面元传热模型能更好地 模拟舰船的动态红外特征;编制的舰船红外特征模 拟软件,可模拟舰船在不同时刻、地理位置、航速、航 向、风速等情况下的表面瞬时温度和红外特征,模拟 的舰船表面瞬时温度随时间的变化与实测结果基本 一致,能满足实时动态模拟的需要.这对增强舰船隐 蔽性、保密性、生存能力和红外对抗能力都有极其重 要意义;另外,对舰船的红外隐身设计也有一定的指 导意义.

当然,状态空间法也有一些较之传统不足的地 方.比如,由于状态空间法实际上是一种半差分方 法,故精度略低于拉氏变换法,但实例计算表明,其 精度已足以满足实际工程应用的需要^[14].

本文计算中,暂时还未考虑相邻面元间的热传 导和辐射,在下一步的工作中,应把这一部分考虑进 去.

REFERENCES

- [1] ZHU Wen-Yong, YAO Lian-Xing. Overview of the infrared theoretical modeling methods from abroad[J]. Research on Signature of Target and Environment(朱文勇,姚连兴. 国外 红外理论建模内容和方法概述. 目标与环境特征研究), 1998, 2: 48—52
- [2] YANG Bao-Cheng, SHEN Guo-Tu, Approximate method in the theoretical modeling of thermal graphics of the naval vessels[J]. *Research on Signature of Target and Environment* (杨宝成,沈国土. 舰船红外图像理论建模中的近似方法, 目标与环境特征研究), 2000, 1: 28—34
- [3] SU Peng-Yi. Research on the theoretical modeling of thermal graphics of the naval vessels[D]. Master Dissertation of Shanghai University of Jiao Tong(粟鹏义. 军舰红外热像理 论建模研究. 上海交通大学硕士学位论文),1995, 1:2-40
- [4] Vaitekunas D A, Fraedrich D S. Validation of the NATOstandard ship signature model (SHIPIR) [J]. SPIE, 1999, 3699: 103-113
- [5] Vaitekunas D A, Alexan K, Lawrence O E. SHIPIR/ NTCS: A naval ship infrared signature countermeasure and threat engagement simulator[J]. SPIE, 1996, 2744: 411-424

- [6] WU Jun-Ling, LI Jian. Software simulation of the tehermal graphics of the naval vessels [J]. Optics Technology (吴俊 岭,李坚. 舰船红外热像的软件模拟. 光学技术), 1999, 7(4): 7-8
- [7] ZHU Wen-Yong, GAO Jing, ZHOU Gang-Hui, et al. Simulation of thermal imaging of the naval vessels[J]. Journal of Infrared and Millimeter Waves(朱文勇,高景,周刚慧, 等. 舰船红外成像模拟. 红外与毫米波学报), 1998, 17 (2): 129—133
- [8] XUAN Yi-Min, LI De-Cang, HAN Yu-Ce. Synthetic infrared thermal image of complicated terrain backgrounds [J]. *Journal of Infrared and Millimeter Waves*(宣益民,李德沧, 韩玉阁.复杂地面背景的红外热像合成. 红外与毫米波学报), 2002, 21(2):133—136
- [9] SHEN Guo-Tu, YANG Bao-Cheng, CAI Ji-Guang. Computerized simulation of infrared images of ship targets on the sea [J]. Journal of Infrared and Millimeter Waves(沈国土,杨宝成,蔡继光.海面船目标红外图像的计算机模拟. 红外与毫米波学报), 2002, 21(2); 14—18
- [10] WEI Xi-Zhang, LI Xiang, ZHUANG Zhao-Wen. Compu-

tation of the infrared targets background and temperature field[J]. Journal of Infrared and Millimeter Waves(魏玺章, 黎湘,庄钊文. 红外目标背景及温度场的计算. **红外与毫** 米波学报), 2000, **19**(2): 139--141

- [11] Wilson D M. A method of computing ship contrast temperatures including results based on weather ship J environment data. AD-A078794, Naval Surface Weapons Center, 1980, 1: 2-21
- [12] CEN Huan-Xia. Application of the Solar Energy [M]. Beijing: Tsinghua University Press (岑幻霞. 太阳能热利用. 北京:清华大学出版社), 1997, 1: 2-20
- [13] WANG Bing-Zhong. Measurement and Criterion of the Solar Energy[M]. Beijing: Science Press(王炳忠.太阳辐射 能的测量与标准.北京:科学出版社), 1988, 9: 34-58
- [14] CHEN Zhi-Jiu. Thermo-dynamics of the Refrigeration System[J]. Beijing: Machine Press(陈芝久. 制冷系统热动力学. 北京:机械工业出版社), 1998, 5: 148-171
- [15] Hughes H G. Infrared Ship Signature Evaluation. CA 92152-5000. AD-A209 354, San Diego; Naval Ocean Systems Center, 1989, 2: 2—12