三维 PML 吸收边界条件在微带线 不连续性问题分析中的应用*

周 平 徐善驾

(中国科学技术大学电子工程与信息科学系,安徽,合肥,230027)

摘要 将完全匹配层(PML)吸收边界条件从求解二维 TE/TM 模问题推广到求解三维混合模传输线问题,通过对 各种三维微带线不连续性结构散射特性的计算表明,文中给出的电磁 PML 吸收边界条件保持了二维情况下宽带、 高精度的优点,在复杂结构的 FDTD 分析中具有重要的实用意义. 关键词 完全匹配吸收边界条件,时域有限差分法,不连续性,微带线.

APPLICATION OF 3-D PML ABSORBING BOUNDARY CONDITIONS TO THE ANALYSIS OF MICROSTRIP DISCONTINUITIES*

ZHOU Ping XU Shan-Jia

(University of Science and Technology of China, Hefer, Anhui 230027, China)

Abstract The perfectly matched layer (PML) absorbing boundary conditions were extended from 2-D TE/TM modes problem to the case of 3-D hybrid modes transmission problem. Scattering characteristics of 3-D discontinuity structures in microstrip lines were successfully investigated. Numerical results show that the presented 3-D PML absorbing boundary condition maintains the advantage of wide band and high accuracy of ordinary 2-D PML. This technique can be further used in the FDTD analysis for complicated structures.

Key words PML absorbing boundary conditions, FDTD method, discontinuity, microstrip line.

引言

时域有限差分法(FDTD)不仅能应用于开域的 散射问题,而且越来越多地用来分析微波及光学导 波结构的传输特性,在导波结构传输问题的 FDTD 分析中,最重要的问题是采用什么样的吸收边界条 件,以使截面对数值结果的影响尽可能地减小.因为 在一般的波导中存在着多种传输模式,并且都有明 显的色散特性,因此一种好的边界条件必须能够吸 收以不同群速度传输的电磁波能量,或者说必须具 有很宽的频带特性.

应用于自由空间问题的吸收边界条件有很多种,包括单向波方程(One-way wave equation)边界条件^[1]、超吸收边界条件^[2]、外行波边界条件^[1]等. 稍作修改,这些边界条件都可用于导波结构中.但 是,这些吸收边界条件可应用的频带都比较窄、可以 采用一些特殊的处理来增加这些边界条件的带宽, 如色散条件(DBC)^[4]采用 N 个一阶微分算子相乘 的方法,得出一种能准确吸收 N 种频率的正入射波 的吸收边界条件(或者说能准确吸收以 N 种不同速 度传输的波),大大增加了边界条件的带宽.

我们根据Berenger完全匹配介质层(PML)^[i~7] 的概念,给出一种新的吸收边界条件,并用来分析微 带线的不连续性问题.这种边界条件的优点是其吸 收效果在理论上与电磁波频率和它的入射角度无 关,并且不需要预先知道传输模式的场分布和色散 特性.

1 分析方法

Berenger 完全匹配介质层(PML)的概念提供

^{*} 国家自然科学基金基金1编号 69671028)资助项目 稿件收到日期 2000-04-03,修改稿收到日期 2001-02-19

The project supported by the National Natural Science Foundation of China (No. 69671028) Received 2000-04-03, revised 2001-02-19

(1**h**)

(Ii)

(2)

(3)

(4)

了一种新的截断边界的方法,即在网格的边界之外 利用一种非物理的损耗介质来消除反射,在 PML 介质内,普通的场分量被分裂为两个子分量,这种分 裂给介质参数增加了额外的自由度,使得以任意频 率和角度传播的电磁波在介质内部迅速衰减,并且 使其波速及波阻抗与普通的无损介质相同,从而保 证了这种外加的介质能与导波结构中原有的介质 "完全匹配".

对微带线情况,由于电磁波在微带中的传播方向可近似认为与导带平行、我们在终端截断面之外加上一段 PML 介质来吸收正向传输的波,而在顶端和侧壁上应用一阶 Mur 吸收边界条件,在源端激励平面应用色散边界条件来消除反射波的影响.计算中所用的模型如图 I 所示.事实证明这样的计算模型是合理和有效的、

Berenger 提出 PML 吸收边界条件时主要用来 分析 TE 或 TM 模的传输间长问题、我们实践证明, 对三维混合模传输线,本文给出的三维 PML 边界 条件也具有很好的特性.在图 I 所示的三维 PML 介质内部,电磁场满足以下的一组方程

$$\mu \frac{\partial H_{xy}}{\partial t} = -\frac{\partial E_z}{\partial y}, \qquad (1a)$$

$$\mu \frac{\partial H_{zz}}{\partial t} + \sigma_z^* H_{zz} = \frac{\partial (E_{yz} + E_{yz})}{\partial z}, \quad (1b)$$

$$\mu \frac{\partial H_{yz}}{\partial t} + \sigma_{z}^{*} H_{yz} = - \frac{\partial (E_{y} + E_{zz})}{\partial z}, \quad (1c)$$

$$\mu \frac{\partial H_{yz}}{\partial t} = - \frac{\partial E_z}{\partial x}, \qquad (1d)$$

$$\mu \frac{\partial H_x}{\partial t} = \frac{\partial (E_{xy} + E_{xz})}{\partial y} - \frac{\partial (E_{yz} + E_{yz})}{\partial x}, \quad (1e)$$

ε

$$\frac{\partial E_{xy}}{\partial t} = \frac{\partial H_z}{\partial y}, \qquad (1f)$$

$$\varepsilon \frac{\partial E_{zz}}{\partial t} + \sigma_z E_{zz} = - \frac{\partial (H_{yz} + H_{yz})}{\partial z}, \quad (1g)$$

(1b) $R = \exp\left(-\frac{2\sigma_{\max}\delta}{(n+1)\varepsilon c}\right).$

与 σ_{mar}有如下关系

率和人射角无关,

的 omax,可以采取以下形式

式(4)中 c 为真空中的光速, c 为介质的介电常数.根据对反射系数 R 的具体要求,即可确定 σ_{max}的值.

 $\varepsilon \frac{\partial E_{yz}}{\partial z} + \sigma_z E_{vz} = - \frac{\partial (H_{yz} + H_{zz})}{\partial z},$

 $\varepsilon \frac{\partial E_{z}}{\partial r} = - \frac{\partial H_{z}}{\partial r},$

 $\frac{\sigma_z}{s} = \frac{\sigma_z}{u}$,

则传输场在 PML 介质内部按指数衰减,并且与频

中衰减很快,终端面可以用电壁来截断,这样整个计

算域就被封闭起来了.在计算中,分界面上电导率的

突变将会引起数值反射,因此在Ⅱ区中,介质的电导

率和磁损耗系数都从分界面上的0逐渐增大到终端

 $\sigma(\rho) = \sigma_{\max} \left(\frac{\rho}{\delta} \right)^n$

对于式(3)中的n值,我们的实践表明,只要取n=2

的新变抛物线就可以获得良好的效果. 反射系数 R

在图 I 所示计算模型中,因为场在 PML 介质

如果电导率 o, 和磁损耗 o, 满足匹配条件

 $\epsilon \frac{\partial E_z}{\partial t} = \frac{\partial (H_{yz} + H_{yz})}{\partial T} - \frac{\partial (H_{zy} + H_{zz})}{\partial y}, \quad (1)$

在 PML 介质中,场衰减得很快,图 1 所示的介质层不需要太厚,我们的实践表明:取 10 个网络长度就可得到很好的结果.也正是因为场的变化太快,标准的 Yee 网格迭代公式不再适用,而应该采用指数时间迭代公式^[5].需要说明的是,本计算模型中 I和 I 两区交界面上切向场的连续性条件由网格分析和总体合成给予保证、

2 数值结果

为了验证本文给出的三维 PML 边界条件在混 合模传输特性分析中应用的有效性,我们分析了一 些三维微带线不连续性结构的散射特性,首先,我们 考虑终端开口的微带线,如图 2(a)所示,其中介质 厚度 h=0.6mm,导带宽度 w=0.6mm,导带厚度 t= 0, ϵ_r = 9.6.其反射系数的计算结果如图 2(b)所示.

同样,我们还计算了如图 3(a)所示微带线导带 宽度阶梯不连续性的散射参数,其中介质厚度 h=

图 2 终端开路微带线及其反射特性 (a) 终端开路微带线 (b) 反射系数的频率特性 Fig. 2 Open terminated microstrip line and its reflection characteristics (a) the structure of open terminated microstrip line (b) frequency characteristics of reflection coefficient

图 3 微带线导带的宽度阶梯及其反射特性 (a) 微带线导带的宽度阶梯 (b) 散射系数的频率特性 Fig. 3 Strip width step discontinuity of microstrip line and its scattering characteristics (a) strip width step discontinuity of microstrip line (b) frequency characteristics of the scattering coefficient

0.6 mm,导带宽度 $w_1 = 0.6 \text{ mm}, w_2 = 1.2 \text{ mm}, 导带 厚度 <math>t = 0, \epsilon, = 9.6$,数值计算结果如图 3(b)所示.在 分析中我们采用了文献[8]中散射参数的计算公式.

本文给出的 PML 吸收边界条件也可以应用于 更复杂的不连续性问题,如图 4 所示的一种微带线低 通滤波器,其中介质厚度 h=0.794mm, c, = 2.2.图 4 中结构参数的尺寸为 mm.其散射特性如图 5 所示.

我们将三维 PML 边界条件应用于各种微带线 不连续性结构的 FDTD 分析中,得到了与文献中给 出的计算值和测量值相一致的结果,说明本文给出 的三维 PML 吸收边界条件在混合模传输线结构的 分析中十分有效.由于这种边界条件与频率和波的 人射角度无关,也就是说具有非常宽的工作带宽,从 而能广泛应用于多模色散传输结构的分析中.

图 4 一种做带线低通滤波器 Fig. 4 A kind of low pass filter of microstrip line

Fig. 5 Scattering parameters of low pass filter of microstrip line (a) frequency characteristics of S_{11} (b) frequency characteristics of S_{21}

REFERENCES

- [1] Mur G. Absorbing boundary conditions for the finite difference approximation of the time domain electromagentic-field equations. *IEEE Trans. Electromagn. Compat.* .1981.23(11): 377
- [2] Mei K K, Fang J. Superabsorption method to improve absorbing boundary conditions. *IEEE Trans. Antennas Propagat.* 1992,40(9): 1001
- [3] Bayliss A, Turkel E. Radiation boundary conditions for wave-like equations. Commun. Pure Appl. Math., 1980, 33: 707
- [4]Bi Z Q, Wu K L, Wu C, et al. A dispersive boundary condition for microstrip component analysis using the FD-TD method. IEEE Trans. Microwave Theory Tech., 1992,40(4): 774
- [5]Berenger J P. A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys., 1994.

114:185

- [6]Katz D S. Thiele E T. Taflove A. Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes. *IEEE Microwave and Guided Wave Lett.* .1994.4(4): 268
- [7] Reuter C E. Joseph M, Thiele E T. et al. Ultrawideband absorbing boundary condition for termination of waveguiding structures in FD-TD simulations. *IEEE* Microwave and Guided Wave Lett. ,1994,4(10): 344
- [8] Zhang X, Mei K K. Time domain finite difference approach to the calculation of the frequency dependent characteristics of microstrip discontinuities. *IEEE Trans. Microwave Theory Tech.*, 1988, 36(12): 1775
- [9] Sheen D.M. Ali S.A. Abouzahra M.D. et al. Appheation of the three-dimensional time-domain method to the analysis of planar microstrip circuits. *IEEE Trans. Mi*crowave Theory Tech. .1990.38(7): 849