红外激光传输用聚苯乙烯-银-玻璃 基体空心波导研究*

楼静漪 童利民

(浙江大学物理系光纤电子材料研究室, 浙江大学硅材料国家重点实验室,浙江,杭州、310027)

摘要 利用液相缓膜法研制成了性能软好的数元传输用聚去乙烯-银-玻璃基体小直径空心波导,波导长度达到 1m 左右, 波导直径为 800~1200µm,对于 CO2 截光(1), 6µm)的传输损耗低达 1.73dB/m,损伤阈值离于 11.2W(17.2 W/mm²),实验结果表明,聚苯乙烯-银-玻璃基体小直径空心波导适用于医学等领域 CO2 激光传输的要示,并有望 在其他红外波段的激光能量传输中得到应用, **关键词** 空心波导,CO2 截光,聚苯乙烯,

STUDY ON HOLLOW-WAVEGUIDES OF POLYSTYRENE-COATED SILVER-GLASS FOR TRANSMISSION OF INFRARED LASER ENERGY⁺

LOU Jing-Yi TONG Lt-Min

(Department of Physics, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang 310027, China)

Abstract Polystyrene-coated hollow glass waveguides were fabricated by means of liquid phase deposition method. The length of the waveguide is about 1m and ns diameter is 800 to 1200μ m. The minimum optical loss of the waveguides is 1.73dB/m with damage threshold higher than 11.2W (17.2W/mm²) for CO₅ laser (10.6 μ m). Experimental results show that polystyrene-coated silver hollow glass waveguides are suitable for delivery of CO₅ laser in medical applications, and are also promising for energy transmission of other infrared lasers. **Key words** hollow waveguide, CO₅ laser, polystyrene.

引言

空心波导特别适用于传输 CO₂、CO 和 Er: YAG 等红外波段激光、近 20 年来一直是红外激光 传输媒介领域的研究热点^[1]. 目前,国际上研制的红 外传输空心波导绝大部分均采用"电介质膜-金属膜 -玻璃基体"型结构,其中金属膜多采用银膜,而电介 质膜材料则随传输波长而定.在 CO₂ 激光波段,已 报道使用 COP(cyclic olefin polymer)^[2]、FCP(fluorocarbon polymer)^[3]和 PI(polymide)^[1]等介质膜 材料制作的空心波导,但由于这些材料大多不容易 获得(如 COP),且对成膜条件要求苛刻(如 COP 需 要数小时持续升温至180C,PI需要在100~250C 高温下成膜,FCP需要在150C恒温成膜),给空心 波导的制备和研究增加了复杂性.为此,我们通过大 量试验.使用更为常见的电介质膜材料聚苯乙烯研 制成功了红外传输用低损耗空心波导.与国际上其 他的空心波导研究者所采用的特殊电介质膜材料比 较,聚苯乙烯是一种常见的有机聚合物,原料丰富, 使用方便,性质为人所熟知,光学性能也较好.并能 在室温下成膜.我们的实验结果表明,使用聚苯乙烯 作为电介质膜材料也能研制成损耗较低的红外激光 传输用空心波导,并有望将其试用于临床医学和工 业等领域.本文主要介绍聚苯乙烯-银-玻璃基体小

^{*} 国家自然科学基金(编号 59906011)资助项目 稿件收到日期 2000-10-12,修改稿收到日期 2001-01-09

The project supported by the National Natural Science Foundation of China (No. 59906011)

Received 2000-10-12 revised 2001-01-09

直径空心波导的制作及测试,并对测试结果进行了 一定的分析.

1 空心波导的制备

已有的空心波导制作方法有液相、气相以及中心腐蚀法等^[1]. 在这些方法中,东京大学的 Mitsunobu Miyagi 研究小组基于全液相技术的化学液 相沉积法是效果最好的一种^[2]. 我们也采取这种方 法制备空心波导,空心波导制备包括银反射膜的沉 积和电介质膜的镀覆两个过程.

我们选择耐热的硼玻璃等拉制成内径 600~ 1500μm、长度 500~1200mm 的空心波导基体.使用 液相沉积法(即改进的银镜反应法)在玻璃管内表面 镀上极其光滑的银膜层.镀液与还原液的配制如表 1 所示,制备装置如图 1 所示.在沉积过程中,要保 证液体流过玻璃管时,能充满整个管子,不允许气泡 存在,以避免流速不稳和银膜脱落.反应持续 10~ 15min 以形成一定厚度的光洁银膜.反应结束后,用 蒸馏水和丙酮混合液清洗玻璃管内表面,然后,用氮 气流缓慢吹干管子内表面的丙酮溶液.

聚苯乙烯膜的镀制过程如下,将吹干的镀有银 膜的硼玻璃管竖直固定,并用一段带流量控制阀的 橡皮管封闭其低端,使用医用注射器将浓度为 3.0 wt^g的聚苯乙烯-甲苯溶液缓慢注入管中,直到整根 玻璃管都充满为止,静置 3min 后,打开连接于底部

图 1 镀银膜实验装置示意图 Fig. 1 Experimental setup for deposition of silver film inside a pyrex glass tube

20)眷

图 2 聚苯乙烯-银-玻璃基体空心波导结构 Fig. 2 Structure of polystyrene-Ag-coated hollow glass waveguide

的流量控制阀,缓慢放出溶液,待溶液完全放完后, 去掉底部的橡皮管,再使附着一层聚苯乙烯溶液的 玻璃管竖直放置于空气中,等甲苯溶剂挥发后,一层 聚苯乙烯薄膜就形成了,整个过程均在干燥,无尘的 环境中完成,室温稳定在21C左右.我们所制作的 聚苯乙烯-银-玻璃基体小直径空心波导的具体结构 如图2所示.

空心波导所需的银膜厚度可由电磁波在金属表 面的穿透深度 $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$ 决定,对于银和 CO₂ 激光 来说,电导率 $\sigma = 6.29 \cdot 10^7 \text{S/m}$,光频率 $\omega = 1.78 \times$ 10^{14}rad/s ,真空磁导率 $\mu = 1.2566 \times 10^{-7} \text{H/m}$,计算 可得 $\delta = 1.2 \times 10^{-8} \text{m}$,即穿透深度只有数十纳米.银 镜反应生成的银膜厚度对于反射 CO₂ 激光来说是 足够的,然而较厚的银膜将有利于散发热量,从而提 高波导所能承受的功率.因此,在我们的实验中,实 际所镀银膜厚度为 0.5~1.5 μ m.

介质膜的厚度对空心波导的传输损耗影响很 大,研究表明^[5],对于特定的传输波长λ,获得最小 损耗的介质膜厚为

表 1	镀液和还原液的配制	I
Table 1 Composition	ns of plating and redu	ucing solutions
a: AgNO	10g/60m]	+NH ₁

镀 液	b. KOH	6g/60ml + NH ₃		$+NH_{3}$
		a+b	NH	
c: Grape Sug		zar 75g/750ml		
还原液	d:	HNO3	1.8g/730m	ıl
	c	⊥d 煮沸	$+C_2H_5OH 5$	0ml

其中 a 为介质膜的折射率,对于聚苯乙烯,在 10.6 μ m 处的折射率为 1.56. 计算可得:对于传输 10.6 μ m 的 CO₂ 激光,聚苯乙烯膜的最佳厚度为 1.30 μ m.我们在实验中所镀的聚苯乙烯膜厚的测量值为 1.2~1.5 μ m.

2 空心波导光学性能测试

2.1 传输损耗测试(对 10.6µm 的 CO₂ 激光)

我们使用连续 CO。激光器(10.6µm)对 3 个空 心波导样品的传输损耗进行了测试,被测样品的部 分参数列于表 2. 测试系统如图 3 所示. 使用焦距为 100mm 的红外 ZnSe 透镜将光束直径约为 3mm 的 CO, 激光聚焦输入被测波导,在透镜焦点处放置一 块金属镍片,镍片中央开有一个直径为 500μm 的小 孔,正对透镜焦点,测量从小孔中出射的激光功率作 为待测波导的人射功率 P.,...将波导入射端正对小 孔,并调节波导使其中心轴与系统光轴重合,测量波 导的输出功率 Poor,得到被测波导的损耗系数 a $(dB) = 10lg(P_w/P_{out}). 测量中使用的激光输入功率$ 为 2.8~4.5W,测量结果如图 4.为了对比可见波长 下空心波导的损耗系数 在保证相同入射角条件下, 我们使用 LD 激光(波长为 650nm)和玻璃透镜对上 述被测波导进行了测试,测试结果如图 4. 图中 CO₂ 激光的最低传输损耗为 1.73dB/m.损耗随波导直 径的减小而增大,但不精确符合理论推论[1],即损耗 与直径三次方成反比,这是由于各波导的聚苯乙烯 膜厚度以及镀膜质量等方面存在细小差别.另外. CO: 激光的传输损耗明显低于 LD 激光,这是由于 我们选择的聚苯乙烯膜厚度是针对 CO。激光波长 的,同时,波长较长的 CO; 激光对银膜表面的微缺 陷相对不敏感.

2.2 损伤调值测试(对 10.6μm 的 CO₂ 激光)

损伤阈值是激光传输用空心波导的一个重要参数、空心波导在实际应用中必须工作在损伤阈值以

内,以保证使用安全.

表 2 被测聚苯乙烯-银-玻璃基体小直径 空心波导样品的几何参数

Table 2 Geometric parameters of polystyrene-

Ag-coated hollow glass waveguides

样品 编号	长度 (µm.)	直径 (m)	银膜厚度► (µm)	聚苯乙烯腹厚度* (μm)
1	1130	1.1	1.07	1.26
2	910	0, 85	1.42	1.33
3	82 0	1.0	1.30	1. 42

*称重法测量,误差士10%

激光(10. 6μm)损耗对比 新光(10. 6μm)损耗对比 Fig. 4 Optical losses of hollow waveguides for LD and carbon oxide lasers

我们对表 2 中的 2 号样品(长度为 0.85m,内径 为 910µm,对 CO₂ 激光的损耗系数为 2.57dB/m)使 用 CO₂ 激光进行了测试.测试系统仍然如图 3 所 示,调节光强衰减器,分步缓慢增加被测波导的输入 功率,激光功率计始终监测波导的输出功率,当输出 功率大于 3.50W 后,每步输出功率的增量控制在 0.5W 左右,测量稳定时间为 2min 左右(激光功率 计的响应时间为 5s 左右),当激光功率计显示的波 导输出达到 11.2W(功率密度为 17.2W/mm²)时, 被测波导在坚持 20s 后中部开始熔化并烧毁.假设 波导在烧毁前损耗系数为常数,计算可得此时波导 的输入激光功率为 18.6W,输入端功率密度为 28. 5W/mm².由于表 2 中的 1 号和 3 号样品准备用于 激光医学试验,因此,未对其进行破坏性的损伤阈值 测试,但从图 4 的损耗值来看,由于 1 号样品的传输 损耗低于 2 号样品且有效直径大于 2 号样品,因此, 1 号样品的损伤阈值应高于 2 号样品.

3 结论

我们使用聚苯乙烯作为电介质膜材料,利用液 相镀膜法研制成功长度达到 1m 左右的红外激光传 输用聚苯乙烯-银-玻璃基体小直径空心波导,对空 心波导的传输损耗和损伤阈值进行了实验测量.实 验结果表明,使用聚苯乙烯作为电介质膜材料也可 能研制成损耗较低的红外传输空心波导,已研制的 聚苯乙烯-银-玻璃基体小直径空心波导的传输损耗 (对 CO₂ 激光)小于 3dB/mm³,最大传输功率(损伤 阈值)达到 11.2W,已能满足大部分临床医学激光 传输要求^[2],可望试用于临床医学试验. **致谢** 感谢物理系本科毕业班从庆、金淑华同学在 空心波导制作与测量中给予的帮助。

REFERENCES

- [t]James A. Harrington, Yuji Matsuura. Review of hollow waveguide technology. SPIE, 1995,2396:4-14
- [2] Yukio Abe, Yuji Matsuura, Yi-Wei Shi, et al. Polymercoated hollow fiber for CO₂ laser delivery. Opt. Lett., 1998,23: 89-90
- [3]Osawa M, Kato Y, Watanabe T, et al. Fabrication of fluorocarbon polymer-coated hollow waveguides by liquid-phase coating method. Opt. Lasers Technol., 1995.
 27: 393-396
- [4]Katu Y, Osawa M, Miyagi M, et al. Loss characteristics of polyimide-coated silver hollow glass waveguides for the infrared. Electron. Lett., 1995,31: 31-32
- [5] Miyagi M, Kawakami S, Design theory of dielectriccoated circular metallic waveguides for infrared transmission. J. Lightwave Technol., 1984, LT-2; 116-126
- [6] Markolf H. Niemz. Laser-Tissue Interactions: Fundamentals and Applications. Berlin: Springer-Verlag. 1996