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Abstract Rigorous analysis of discontinuities in planar transmission lines
may require accurate computation of a large number of modes. An im-
proved formulation of the singular integral equation (SIE) method for
multilayer unilateral finlines was presented to address this problem. All
the series truncated possess the fast convergence property. A systematic
approach for analytical calculation of the characteristic matrix to arbitrary
order was also proposed. For the determination of propagation constants,
an analytical function that eliminates all the poles in the determinant of
the characteristic matrix was constructed. The developed numerical tech—
niques lead to an accurate, efficient, and reliable computation of both
propagation constants and field distributions for a large number of modes.
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Introduction

Rigorous characterization of discontinuities in planar passive circuits has been one of
the most interesting research subjects. Among the various numerical techniques devel-
oped, the mode-matching method is frequently applied due to its advantageous features.
However, an accurate analysis of strong discontinuities may require the determination of a
large number of modes at both sides of a discontinuity. Hence, for a successful application

of the mode-matching method, the numerical technique used for the solution of mode spec—
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tra should be: 1) accurate; 2) efficient, so that a large number of modes can be easily cal-
culated; 3) complete or reliable, since missing of any intermediate mode solutions may
eventually cause large errors in the mode-matching analysis of discontinuities . In view of
the above three points, currently available techniques are not suitable for generating accu—
rate, efficient, and complete solutions for a large number of modes. In this paper, we pre—
sent an improved formulation of the singular integral equation (SIE) method which pos-
sesses the above-mentioned features for multilayer unilateral finlines.

The SIE method has been proved to be the most efficient and powerful method for the
analysis of planar transmission lines'' ”. For the calculation of a large number of modes in
finlines, however, the existing formulations need further improvements. The main fea—
tures of the present analysis are as follows: 1) Proper combinations of the tangential elec—
tric field or surface current components are used, based on which the series that the inte—
gral equations are finally derived from can be defined with fast convergence; 2) For the ad-
ditionally imposed condition the series is accelerated by making use of its asymptotic be—
havior; 3) A systematic way for the analytical calculation of the characteristic matrix to
arbitrary order is proposed, neither numerical integration nor summation of infinite series
is necessary; 4) For the determination of propagation constants, an analytical function
that eliminates all the poles in the determinant of the characteristic matrix is constructed.
The developed numerical techniques lead to an accurate, efficient, and complete computa—

tion of both propagation constants and field distributions for a large number of modes-

1. The SIE Method for Multilayer Unilateral Finlines

The hybrid modes in a multilayer unilateral finline as shown in Fig. 1 can be treated
as a superposition of LSE and LSM field parts. Each part may satisfy independently all the
boundary conditions on the waveguide walls and the continuity requirements of the tangen—
tial field components at all strip{free interfaces. Only at the interface x = 0, the coupling
between the two parts has to be taken into account so that the vanishing of the tangential

electric field £, on the metallic strips and of the surface current J.in the slot can be guaran—

teed. E:and Js may be written as Y
Bo= Bl+ B, Jo= '+ Ji (1) 55 > g
5o
where the superscripts h and e refer to [g"']. - - g e e g™ gtk
r r
the LSE and LSM parts, respectively. S
CC (e
It is assumed that the variation of the ’ - .0 > X
d d, d,  d,  d, dy

modal fields along the longitudinal di— k= . - ekl - ey
rection is described by exp(— jBz)- E:

Fig-1 Cross section of a multilayer

and Js for the LSE part are completely unilateral finline-

characterized by their y-components,



whereas those for the LSM part can be derived from their z—eomponentsm. Thus, the
whole problem can simply reduce to determining (Ew,])) for the LSE part and (E:, J:) for
the LSM part at x= 0. They may be written as

Ey= BL Alcos(nmy/b), Ji —f;OZ_ Fidhcos(nTty/ b (2a)
= jBE Aisin(ny/b), Ji= - uﬁ)B;FﬁAisin(mTy/b), (2b)

where Fi and F& are the Fourier coefficients of Green’s functions for LSE and LSM parts,
respectiv ely[g]

Now we formulate the SIE method for multilayer unilateral finlines. Two cosine se—
ries f1(y) and f2(y) are constructed in terms of the tangential electric field components,
correspondingly two sine series f3(y) and f 4(y) are constructed as a linear combination of

the surface current components:

. dEZ

Sily) === = £ A cos( ) (3a)

S == Eo= ZAcos(Th) (3h)

fa(y) = {(K”k%— K'"8)J. - jBK“fi—JL}/a&K“K" - ng,(z')sin(r%Ty) (3c)
Faly) = {/31 . J‘ﬁ/}/mK = £ sin("Ty) (3)

where K" and K are the limits of (b/nm) Frand (b/nmr) Frfor large n, respectively. Using
(2) one can express A\", A B\, and B\’ in terms of A% and A:.
Consider now two sine series defined by

=)

N . T i i . T .
gi(y) = I§1A£1)51n(%y) - fiuoAy) = ZI{Aw - Bgl)}sm(%}’), 1= 1,2 (4)

The carefully selected linear combinations in (3) make the series in (4) converge very fast
and it can be proved that the asymptotic behavior of {A W= B} for large n is n° w2

According to the continuity conditions at the interface x= 0, f1(y) and f2(y) should van—
ish on the strips. So, by using (3a) and (3b) one can express A i in terms of the functions

fi(® defined in the slot 8 & Ponly:

; 2 % :
ALY = Tm%fi(y)cos(n(ﬁd(? i= 1,2 (5)

with 9= 1y/b, ®= 185:/b. The continuity conditions at x = 0 also require vanishing f3(y)
and f 4(y) in the slot. Starting with the first equation in (4) in the slot, substituting (5)
and 0 for A’ and f i+2(y), respectively, summing the infinte series, and finally carrying

out the transformation



cosP= Yo- Xoll
Yo= cos{ (B+ ®)/2}cos{(B- H)/2}, (6)
Xo = sin{(P+ P)/2}sin{ (- R)/2},

one obtains the following standard singular integral equations:

_ G - %{jﬁl}ﬂrr,m <1 i= 12 (7)

with Gi(M)= gi(y)/sinRFi(1) = fi(y)/sin®The analytical solutions for these equations
are available. After replacing Gi("]) by the second equation in (4), one can write Fi(') as
Ab

Fi(M = W{ﬂ+ gl(AL”— BMYgu(M), A =0 i= 1,2 (8)

where ¢.(") is defined by (A 1) in the appendix. Substitution of (8) into (5) yields
AV = 2T0Ab + 2X0§]omn{A§,“ - By, m=1, i= 1,2 (9)

where the integrals T and G are given by ( A= 2) and (A= 3) in the appendix. For the
case m= 0, the preceding procedure results in an identity. By truncating the series in (9)
after the N -th term and setting m= 1,2, ..., N, we get 2N equations for 2N+ 1 indepen—
dent unknown coefficients. Examination of (3) reveals that the previously imposed condi—
tions on f i(y) at the interface x = O guarantee only constant E: and J, on the strips and in
the slot, respectively. The vanishing of E:at y= 0 and y= b makes such a constant for E:
automatically zero. For Jy, however, an additonal condition must be imposed to ensure its
vanishing in the slot. Making use of the relation between (44, A%) and (B, B\”), the se—
ries expression for Jr may be rewritten as

e K'"BB\ + (K'ki— K'"B)BY
. _ h 2)
Juuofy = FoAb” + "; (nTl b)

cosn®P (10)

The asymptotic behavior of B'" and B’ for large n can be proved to be n™"?. Thus, the
series in ( 10) converges more slowly than that in (9) and the direct use of (10) would
slow down the overall speed of convergence. To accelerate its convergence, we express Js

as a sum of two series:

© h (n _ [@)] er2 h 2 (2 _ (2)
+ Z:lK B(Bn An )+ (Kk() K B)(Bn An )C()Sn@

. _ hoq(2)

Jwuofy = FiAb (nT/ b)
e K"pA + (Kks— K"BHAWY

+ ngl (nT0 b) cosn P (11)

Substituting (5) into the second series of (11), summing it according to '

Z”ICOS(”(”;OS(”@) - %ln{2| cos®?- cosH ), 0< PPs< T (12)

n=

one obtains



Z K'"B(BY" = A" + (Kko— K"BH)(BY? - AP)
n= (nﬂ/b)

juuo]y = — FiALY + cosn®P

_ %Til{x"gmn) + (K'kb = K"B)F2()}In(2Xd 1 = 1)d". (13)

In principle one can now impose zero Jyat any point in the slot. In order to avoid here the
appearance of improper integrals so as to simplify integration, however, we let the sum of
the values of J, at y= s1 and y= s2 be zero instead. After replacing Fi(T) and Fi(1) by

(8), the imposed additional condition for J» is then written as
b b ¥
- {2Fﬁ+ (K'ks — K"B) }A&” + ;gl{[K”B(BE,” - A+
(Kks— K"B) (B — AS")] * [Xo&n+ (cosn®+ cosn®)/n]) = 0 (14)

where G and &, are integrals given by (A- 4) and (A- 5) in the appendix, respectively.
As AV = BY rapidly approaches zero, the convergence is accelerated.
Through (9) and (14) truncated behind the N" term, one gets a system of character—

istic equations:
[C]*[X]=0 (15)

where [ C] is the characteristic matrix of order 2N + 1, and [ X] is a column vector com-
posed of 2N + 1 independent unknown coefficients (A5, A% . As can be seen from the pre—
ceding procedures, all the series truncated in ( 15) converge rapidly with the order of n- i
to zero. Thus a characteristic matrix of a relatively small order in comparison with other
methods can be used to determine a large number of modes accurately and efficiently.

Equation ( 15) is a nonstandard matrix eigenvalue problem. It can only be solved by
regarding the determinant of the characteristic matrix [ C] as a function in the eigenvalue
to be determined and looking for its zeros. The calculation of the determinant should be ef-
ficient, especially when a large number of modes need to be determined. The fast conver—
gence property of the series truncated has laid a good foundation for an efficient computa—
tion. The remaining problem is the accurate and efficient computation of various integrals
contained in the elements of [ C] . An analytical approach for the computation of these inte—
grals in [ C] to arbitrary order is described in the appendix. Neither numerical integration
nor summation of infinite series is necessary.

The determinant of [C] contains poles in addition to the zeros to be searched for.
Some of the poles are located very close to zeros,so they may greatly interfere the root—
finding process. As a consequence, some zeros may be missing from the mode spectrum.
We construct an analytical function that contains exactly the same set of zeros as in the de—
terminant of [ C], but eliminates all its poles. In this way, the complete determination of

propagation constants can be ensured. We wilil discuss this-topicin detaif'in’a subsequent



6 18

publication.
2. Results and Discussions

If a finline is symmetric with respect to y= b/2, the modes can then be classified as
odd (E:—odd, H:-even) or even (E:—even, H:-odd) modes and the characteristic matrix

can be decomposed into two decoupled submatrices.

Table 1 Convergence of propagation constants f§ k) for odd modes in a finline with
varying order of the characteristic matrix. Parameters: K= 1, L= 2,f= 35GHz, €." =
2.22,67=¢"= 1.0,d,= d\= 3.429,d,= 0.254,5,= 1.278,5,= 2. 278,b= 3. 556mm.

1 Blky N .K=1,L= 2,f= 35 GHz, €
=222,¢?=¢V=1.0,d>= di= 3. 429, d1= 0. 254, 5= 1.278,5,= 2.278,p= 3. 556mm

N | Bilko B! ko B3/ ko Bil ko Bs! ko Bd ko Bil ko Bs! ko( o= — B3 ) Brol ko
2 10.997666 | - 0.662224 [ - j1. 03783 [ - j2. 12437 | - 2.18834 |- j2.23986 | - j2.35776 | 0. 01068~ j2.49830 |- 2.52318
4 10.995294 [ - 0.662247 | - j1. 03783 | — j2. 12438 | — 2. 18834 |- j2.23958 | - j2.35764 | 0. 01069 j2.49824 | - 2.52313
6 [0.995270 | - 0.662247 [ - j1. 03782 [ - j2. 12434 | — 2.18834 |- j2.23957 | - j2.35759 | 0. 01069- j2.49822 |- 2.52309
8 |0.995121 | - 0.662247 | - j1. 03777 | - j2. 12431 | - . 18834 |- 2.23957 | - 2.35752 | 0. 01069- j2.49821 |- p.52307
10 | 0.995084 | - 0662246 | - j1. 03773 | = j2. 12430 | - p. 18834 |- 2.23057 |- j2.35750 | 0. 01069- j2.49821 |- p.52307
12 0.995083 | - .662246 | - j1. 03773 | - 2. 12430 | - P.18834 |- 2.23957 | - 2.35750 | 0. 01069- j2.49820 | - P.52307
14 0.995083 | - .662246 | - j1. 03773 | - 2. 12430 | - P.18834 |- 2.23957 | - 2.35750 | 0. 01069- j2.49820 | - P.52307
20 | 0.995084 | - 0.662245 |- 1. 03772 | - 2. 12430 | - 2. 18834 |- 1233057 |- 2.35749 | 0.01069- j2.49820 |- 2.52307
30 | 0.995085 | - p.662245 |- j1. 3771 |- 2. 12430 | - p. 18834 |- 223057 | - 2.35749 | 0.01069- j2.49820 | - p.52307
2| 0997 | —jo.e608 | - L0373 | - p.1228 —p2m | ————oo [8]

N Baol ko Bso/ ko Baol ko Bsol ko

2 - j4.33821 — j6. 61264 - j8.53876 - j10. 5187

4 - j4.33741 - j5.23067 - 0.01179- j5.91982 - j6. 85409

6 - j4.33680 0. 00295- j5.23078 - 0.00894- j5.91529 — j6. 84814

8 - j4.33654 0. 00367- j5.22905 - 0.00561- j5.91328 - j6. 84516

10 - j4.33649 0. 00375- j5. 22867 - 0.00447- j5.91281 — j6. 84445

12 - j4.33649 0. 00375- j5. 22867 — 0.00448- j5.91280 — j6. 84443

14 - j4.33648 0. 00377- j5. 22860 - 0.00431- j5.91274 — j6. 84438
20 - j4.33647 0. 00378 j5. 22852 — 0. 00406- j5.91266 — j6. 84427
30 - i4.33646 0. 00379- ;5. 22848 — 0.00396- i5.91263 — 16. 84424

N Boo/ ko B! ko B/ ko Boo/ ko Biool ko

2 | - 12,6655 ~ 14,3314 {16, 4064 ~ {18.7307 ~ 202805

4 | - 783642 - 9.00216 — {10, 1844 ~ j11.2846 - {12.5054

6 | - 7.37428 ~ 7.83579 ~ 8 55968 ~ j9. 14815 ~ 9.95070

8 - j7.37433 — j7.83382 - j8.55349 - j9. 14794 0.00337- j9. 66378

10 - j7.37433 — j7.83361 - j855238 - j9. 14764 0.00339- j9. 66370

12 - j7.37433 — j7.83361 - j8.55236 - j9. 14760 0.00339- j9. 66368

14 - j7.37433 — j7.83355 - j8.55227 - j9. 14760 0.00339- j9. 66368

20 - j7.37433 — j7.83349 - j855211 - J9. 14755 0.00339- j9. 66368

30 - j7.37433 — j7.83347 - j8.55205 - j9. 14754 0.00340- j9. 66368




Table 2 Convergence of propagation constants f5 k, for even modes in a finline
with varying order of the characteristic matrix (see Table 1 for parameters)

2 Blky N ( 1)

N | Bilko B! ko B ko(B= —- B3) Bs ko Be/ ko B! ko B! ko B! ko Bio/ ko

1 |-j0.652830 | - j0.712487 | 0.01918- j1.33942 | - j1.40271 | - ji.45848 | - 2.40772 | - j2.42135 | - j2.55783 | - j2.60946
3 [-j0.652861 | - j0.712608 | 0.01685- j1.33671 | - j1.40184 | - jl.45651 | - 2.37402 | - j2.42696 | - j2.55490 | - j2.60507
5 [-j0.652873 | - j0.712674 | 0.01602- j1.33593 | - j1.40160 | - ji.45614 | - 2.36511 | - j2.42747 | - j2.55412 | - j2.60459
7 |- j0.652873 | - j0.712672 | 0.01593- j1.33584 | - j1.40157 | - j1.45609 | - p.36402 | - j2.42752 | - j2.55403 | - j2.60454
9 [-0.652873| - j0.712672 | 0.01593- j1.33584 | - j1.40157 | - jl.45609 | - 2.36402 | - j2.42752 | - j2.55403 | - j2.60454
11 ]-j0.652873 | - jO.712666 0.01592- jl1. 33583 - j1.40157 - j1. 45608 - j2.36388 - j2.42752 - J2.55402 - j2.60453
13 |- j0.652872| - j0.712661 | 0.01592- {1.33582 | - j1.40157 | - {1.45607 | - 2.36378 | - j2.42752 | - j2.55401 | - j2.60452
19 |- j0.652872| - j0.712659 | 0.01592- jl. 33581 ~j1.40157 | - jl.45606 | - j2.36374 | - j2.42752 | - j2.55401 | - j2. 60451
29 |- j0.652872| - j0.712658 | 0.01592— jl.33581 ~j1.40157 | - jl.45606 | - j2.36372 | - j2.42752 | - j2.55401 | - j2.60451
3 |- j0.6512| - j0.7086 {14022 |- j1.4536 o8]

N | Bl ko Bso/ ko Bsol ko Bsol ko Bso! ko Brol ko Bso! ko Boo! ko Bioo/ ko

1| - 5.86082 | - 8.78078 ~ 116559 | - {15.0167 | - jI7.5140 | - 20.9571 | - j23.7588 | - j26.7726 | - {30.0056
3 |- 3.86587 | - j5.05299 - j6.30842 | - j7.85830 | - 9.33413 | - jl0.6397 | - j12.1880 | - j13.7713 | - jI5.1445
5 |- p.85697 | - 5.05161 | - 0.00524- j6.06046 | - j6.49755 | - 77.30293 | - 8.17514 | - j8.95569 | - j9.96917 | - j10.7562
7 |- B.85620 | - 5.05156 | - 0.00523- j6.06034 | - j6.49409 | - 77.28318 | - 8.17415 | - j8.53833 | - j8.95200 | - j9.47131
9 |- p3.85620 | - j5.05156 | - 0.00522- j6.06030 | - j6.49397 | - 77.28317 | - 8.17409 | - j8.53609 | - j8.95179 | - j9.47131
Il |- 3.85607 | - $5.05153 | - 0.00522- j6.06030 | - j6.49380 | - 7.28232 | - §8.17397 | - j8.53593 | - {8.95110 | - j9.47062
13 | - 3.85599 | - j5.05152 | - 0.00522- j6.06029 | - j6.49377 | - j7.28168 | - 8.17392 | - j8.53593 | - j8.95054 | - j9.47024
19 |- 3.85595 | - $5.05151 | - 0.00522- j6.06029 | - j6.49372 | — 728146 | - §8.17390 | - j8.53591 | - {8.95035 | - j9.47010
29 | - 3.85593 | - j5.05151 - 0.00522- j6. 06029 - j6.49370 - j1.28135 - 8.17390 - j8.53591 - j8.95026 - j9.47003

Tables 1 and 2 show the convergence of odd and even modes in a finline with respect
to the series truncation order N, respectively. The results of [ 8] using the SIE method for
the “first” nine modes are also given and they agree well with our results. However, the
reliability of the computation in [ 8] seems to be seriously in question. The fifth odd mode
and the third and fourth even complex ones are missing from the mode spectrum. Within
the first 100 odd modes, those with the following mode numbers are complex: 8,9,12, 13,
18,19, 25, 26,30—33, 39, 40, 56, 57, 61—64, 81, 82, 100; the even complex modes are num —
bered as follows: 3, 4, 15, 16,24, 25, 39, 40, 47, 48, 54,55, 73, 74, 77,78, 84, 85, 92, 93. As
can be seen from the T ables, a characteristic matrix of order 11x 11 (N= 10) is sufficient
for the rigorous computation of the first 100 odd modes within an error of 0. 01% , whilst a
matrix of order 14x 14 (N= 13) gives accurate results for the first 100 even modes within
an error of 0.005%. Figures 2 and 3 show the calculated current components J, and J: at
the interface x= 0 for the dominant mode and the 100th odd complex mode, respectively.
They satisfy very well the continuity requirements and J: shows the correct singularity be—

havior.” fxcellent results ¢an'dlso be obtained for'the elecirie field components £y and E - at
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x= 0.The calculated field distributions given in [ 8] do not contain any singularity behav-

iors and hence are inaccurate.

3. Conclusions

An improved formulation of the singular integral equation method for multilayer uni-
lateral finlines is presented. The developed techniques lead to an accurate, efficient and
complete solution of a large number of modes in finlines for the first time. T his lays a good

foundation for rigorous analysis of discontinuities using the mode-matching method.
Appendix

In the formulation of the SIE method, the following integrals are concerned and can

be solved analytically or evaluated with a recurrence relation:

Ie' (1= 1" sinnP
qn(’7)=;J’_l(,7_,% s, |1 <1 (A= 1)
T = %"llcosm%dn (A - 2)
_ 1! ()
Onn = a' cosm(p(1 )l/zdn (A - 3)
¢! Mo 4Xo 1-
G= { ()72)1/2 )}drl (A - 4)
UM In{4X5(1 = P
En = la’_lq(rb(nlg_ #)1/2 )}dn (A -5)

The analytical expressions for the integrals given below are needed for the evaluation

of the above integrals'”

' mdn 0, n=1,3,5,...
Cn: = A_ 6
;Jfl(l— )1 {(21:)!/(2”%%!), n= 2k= 0,2,4,... ( )

D. = %Il M(1- )= Gl (n+ 2), (A= 7)

-1
22 (51

Q:(M) = TTJ. (—)—nd’?: -y X DT < 1 (A - 8)

where [ (n— 1)/ 2] represents the integer part of (n— 1)/2 and if n= 0, the result of the
summation in (A- 8) is defined as zero.

Sin(n¥/sin®in (A- 1) is a polynomial in Msince it may be written as
sin(n®/sin®P= U 1(cos® = Un1(Yo — X (A-09)
where Un(x) is the Chebychev polynomial of the second kind. Applying (A= 9) and (A-

8) to (A— 1), the analytical expression for ¢i(!) can be obtained as a polynominal in .
For this reason, if (A= 2) and (A= 4) are available analytically, (A= 3} and (A= 5) can
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also be solved.

Cosm®Pcan be written as a polynomial in Tthrough the relation
cos(m¥ = Tw(cosH = Tu(Yo - X (A - 10)
where T'w(x) is the Chebychev polynomial of the first kind. Substituting the polynomial

expression of cosm®Pinto (A— 2), Tw can be integrated using (A- 6).

For the following type of integral

g Ui
0= —dNn
o R T
(R(M = adP+ al+ a2, a# 0) (A - 11)

where f () is any derivable function, the recurrence relation can be obtained as follows:

L= 52 (" R()

b n -
oo T ROV (2 Dt

- (20— 2)a22) (A - 12)

For n= 1 the above formula is still valid by setting the last term to zero. So if the second
term in the bracket of (A— 12) is available in closed form, it is only necessary to solve the
first integral /o for the integrals as in (A— 11) . Applying (A- 12) to (A— 4), one obtains

the following recurrence formula:

G= In(Xi). G= (- 20+ (n- DG (A - 13)
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