清洁及单层吸附的Mo(001)表面 声子色散研究

资剑 张开明

(复旦大学物理系,上海,200433)

摘要——用最近邻及次邻中心相互作用势讨论了清洁的 Mo(001) 表面声子。 作为初步近似,用质量亏损模型讨论了不同吸附原子质量对表面声子的影响。

关键词——Mo(001),表面声子,质量亏损模型。

1. 引言

近年来,关于表面声子的实验探测发展迅速,电子能量损失谱(EELS)^[1]和 He 原子散射^[2]在测量表面声子方面取得了很大成功。由于第一性原理计算表面声子非常困难,绝大多数表面声子的计算使用的是经验方法,经验模型在计算表面声子方面是比较成功的^[3~5]。

Mo 和 W 是理论和实验都研究得比较多的 boo 结构的过渡金属,最近实验上对 W(001)¹⁶¹和 W(110)¹⁷¹表面的声子进行了测量。由于实验技术的限制,表面声子的许多模式还无法测量,从理论上进行研究仍是十分有意义的。对于不同吸附原子,吸附原子之间 及吸附原子与衬底之间的相互作用是很难确定的。作为初步近似,本文用质量亏损模型¹⁸¹讨论单层吸附后、由于吸附物质量不同而引起的表面声子变化。

2. 计算模型

本文选取的相互作用势考虑最近邻和次近邻中心相互作用,即

$$V_{i}(R) = V_{i}^{0} + R_{i}^{02} \left[\alpha_{i} \left(\frac{R}{R_{i}^{0}} - 1 \right) + \frac{1}{2} \beta_{i} \left(\frac{R}{R_{i}^{0}} - 1 \right)^{2} \right], \tag{1}$$

其中

$$\alpha_{i} = \frac{1}{R} \left. \frac{\partial V_{i}}{\partial R} \right|_{R=R_{i}^{0}} , \quad \beta_{i} = \frac{\partial^{2} V_{i}}{\partial R^{2}} \right|_{R=R_{i}^{0}}$$
 (2)

代表相互作用参数,i=1, 2 分别代表最近邻及次近邻, R_i^0 是第 i 近邻的平衡距离. 从平衡条件可以得出 $\alpha_1 = -\alpha_2$, 这样, 共有 α_1 , β_1 和 β_2 3 个参数, 用这 3 个参数拟合 Mo 的体声子 $-\frac{1}{4 \times 1989 \pm 3}$ 月 9 日收到。

曲线^[9]. 可以确定这 3 个参数值 为 $\alpha_1 = -\alpha_2 = 2.54 \,\mathrm{eV}/(\mathrm{nm})^2$, $\beta_1 = 260 \,\mathrm{eV}/(\mathrm{nm})^2$, $\beta_2 = -2.54 \,\mathrm{eV}/(\mathrm{nm})^2$, $\beta_3 = -2.54 \,\mathrm{eV}/(\mathrm{nm})^2$, $\beta_4 = -2.54 \,\mathrm{eV}/(\mathrm{nm})^2$, $\beta_5 = -2.54 \,\mathrm{eV}/(\mathrm{nm})^2$ $\beta_5 = -2.54 \,\mathrm{eV}/(\mathrm{nm})^2$ $\beta_5 = -2.54 \,\mathrm{eV}/(\mathrm{nm})^2$ $\beta_5 = -2.54 \,\mathrm{eV}/(\mathrm{nm})^2$

309eV/(nm)². 图 1 比较了拟合结果与实验测量结果,从图中可以看出,计算值与实验值符合得比较好.

由于吸附原子之间及吸附原子与衬底之间的相互作用很难确定,本文用质量亏损模型¹⁸³作为初步近似来讨论单层吸附原子在Mo(001)表面的吸附情况,并认为所有的相互作用与体内相同,不同吸附原子造成的差别仅仅是质量上的差异. 吸附原子的质量记为 m, Mo 原子的质量记为 M. 选取 15 个原子层模型模拟表面吸附, 其本征方程为

图 1 拟合计算的 Mo 体声子与实验值的比较(黑点代表实验值)

Fig. 1 The comparison between fitted bulk Mo phonons and the experimental results.

$$\sum_{l'\nu} D_{\mu\nu}^{ll'}(\boldsymbol{q}) \xi_{\nu}(l', \boldsymbol{q}) = \omega^{2}(\boldsymbol{q}) \xi_{\mu}(l, \boldsymbol{q}), \qquad (3)$$

式中 $\xi_{\mu}(l)$ 代表 l 层原子沿 μ 方向的极化,满足归一化条件, $D_{\mu\gamma}^{ll}$ 是动力学矩阵元,有

$$D_{\mu\nu}^{ll'}(\boldsymbol{q}) = \frac{1}{\sqrt{MlMl'}} \sum_{l'', \boldsymbol{r}_{i}(ll'')} \left[\alpha_{i} \delta_{\mu\nu} + (\beta_{i} - \alpha_{i}) \frac{R_{i}^{0} {}_{\mu} R_{i}^{0\nu}}{|\boldsymbol{R}_{i}^{0}|^{2}} \times (\delta_{ll'} - \boldsymbol{e}^{i\boldsymbol{q} \cdot \boldsymbol{r}_{i}(ll'')} \delta_{l'll''}) \right]$$

$$(4)$$

其中 $\mathbf{R}_{i}^{0} = \mathbf{r}_{i} + (la/2)\hat{\mathbf{Z}}$ 是 l 层原子的位置矢置, a 是晶格常数, $\hat{\mathbf{Z}}$ 方向垂直于表面, \mathbf{r}_{i} 是 \mathbf{R}_{i}^{0} 在 (\mathbf{X}, \mathbf{Y}) 平面的投影. 当 l=1 和 l=15 时, $M_{i}=m$, 其它情况下, $M_{i}=M$. 对不同的 \mathbf{q} 解本征方程(3)就可得到声子曲线.

3. 清洁表面的声子

Mo(001)表面的二维布里渊区(SBZ)如图 2, 清洁表面相当于 m=M 的特殊情况、图

图 2 Mo(001)表面的二维布里渊区 Fig. 2 Two-dimensional Brillouin zone for Mo(001) surface.

图 3 清洁 Mo(001)表面的声子色散曲线 Fig. 3 Phonon dispersions of clean Mo(001) surface.

图 4 S_1 、 S_2 、 S_3 、和 S_4 波在 L 点的平方振幅 $|\xi(l)|^2$ 随原子层数 l 的衰减

Fig. 4 Attenuations of squared vibrational amplitudes $|\xi(l)|^2$ of S_1 , S_2 , S_3 and S_4 vs layer index l at point L.

3 给出了 Mo(001) 表面沿 Δ 、 Λ 和 Σ 方向的声子曲线,其中阴影部分是体能带的投影. 图中表面波 S_1 、 S_2 、 S_3 和 S_4 都是两度简并的,这是因为薄层 型有两个表面的缘故. 在 q 很小的这是 对有两个表面的缘故. 在 q 很小的这是 由于两个表面相互耦合造成的. 只会 离 是数取得足够多,这种分裂将会 是数取得足够多,这种分裂将会 不 SBZ 区域, S_2 、 S_3 和 S_4 . S_1 存在于 Δ 和 Δ 方向 之间,而 S_3 主要存在于 Δ 和 Δ 方向 图 4 和图 5 分别给出了表面波的平方

$$\begin{split} |\bar{\xi}(l)|^2 &= |\bar{\xi}_x(l)|^2 \\ &+ |\bar{\xi}_y(l)|^2 + |\bar{\xi}_z(l)|^2 \end{split}$$

随原子层 1 的衰减情况, 从图中可以

看出, S_1 、 S_2 和 S_4 波的振动振幅主要分布在第一层表面原子上,而 S_3 波的振幅则主要集中在第二层原子上。

在 Δ 方向上, S_1 波是完全的切变水平 模式(Shear horizontal mode), 即振动方 向平行于表面且垂直于q方向; S_2 波主要 是切变垂直模式 (Shear vertical mode), 即振动方向垂直于表面; S_4 波主要是纵向 模式(Longitudinal mode),即振动方向沿 q 方向,在 L 点, S_1 波的振幅完全落在第 一层原子上(参见图 4). 在 Λ 方向上发生 了一个有趣的现象,随着 q 从 L 点向 M点移动, S_1 和 S_2 在彼此接近的地方相互交 换振动模式, S1 波从水平模式变成垂直模 式, S_2 从垂直模式变成水平模式, S_3 波在 Λ 方向主要是垂直模式, S_4 波仍然是纵向 模式. 但随 q 向 M 接近, Sa 波的纵向模式 成份增加,在 Σ 方向 S_1 波主要是垂直模 式. 从以上分析可以看出, S2波(在 4 方 向)和 S_1 波(在 Λ 方向和 Σ 方向)是瑞利 波.

图 5 S_1 、 S_2 、 S_3 和 S_4 波在 Δ 方向中点的平方振幅 $|\xi(l)|^2$ 随原子层数 l 的衰减

Fig. 5 Attenuations of squared vibrational amplitudes $|\xi(l)|^2$ of S_1 , S_2 , S_3 , and S_4 vs layer index l at the center of Λ direction.

图 6 不同吸附原子质量 m/M = 0.4, 0.8, 1.0 和 1.5 的声子色散曲线(m/M = 1.0 对应于清洁表面) Fig. 6 Phonon dispersions for different values of ratio m/M = 0.4, 0.8, 1.0 and 1.5 (m/M = 1.0 corresponds to the clean surface).

4. 单层吸附表面的声子

本文用质量亏损模型处理 Mo(001)单层吸附表面的情况. 图 6 给出了m/M=0.4、0.8、1.0 和 1.5 的原子吸附后的声子曲线. 在轻质量原子吸附情况下(如 m/M=0.4),瑞利波存在于体带内, S_3 波存在于 L 点很小的区域内, 并出现了 A_1 、 A_2 和 A_3 表面波,由于 $q\to 0$ 时 A_1 、 A_2 和 A_3 波的振动频率不为零,故这 3 个表面波可以看成是表面光学波. A_3 波存在于整个 SBZ 区域, A_2 波存在于大部分 SBZ 区域. 对于更轻的原子吸附, A_1 、 A_2 和 A_3 波离体能带更高. 在 Γ 点, A_3 波是完全的垂直模式. 在 Δ 方向,随 q 由 Γ 点向 L 点靠近, A_3 被 在接近的地方交换模式, A_3 波由垂直模式变成纵向模式, A_2 波由纵向模式变成垂直模式. 随着 q 由 L 点向 M 点靠近, A_3 波仍然是纵向模式,但垂直模式有所增加. 在中点 Δ 附近, Δ 和 Δ 2 部分交换模式, Δ 2 波有纵向模式成份, Δ 1 变成纵向+水平模式. 在 Δ 方向中点偏右处, Δ 3 同 Δ 1 波部分交换模式. Δ 3 波拥有水平模式成份,并随着向 Δ 1 法近水平模式增加,至 Δ 1 点变成了完全的水平模式. 在 Δ 5 方向中点的平方振幅随原子层的衰减情况. Δ 3 波和 Δ 2 波振幅主要集中在表面原子上,而 Δ 1 波的振幅主要集中在第二层原子上。

从图 6 还可以看出,在轻原子吸附情况下存在 3 个光学表面波. 随着吸附原子质量的增加,光学表面波消失,变为体带部分. S_1 、 S_2 和 S_3 波随吸附原子质量增大而愈来愈偏离体能带. S_4 对吸附原子质量非常敏感,仅存在于 m/M=1 附近很小的范围内.

图 7 A_1 、 A_2 和 A_3 波在 A 方向中点的平方振幅 $|\xi(l)|^2$ 随原子层数 l 的衰减

Fig. 7 Attenuations of squared vibrational amplitueds $|\xi(s)|^2$ of A_1 , A_2 and A_3 vs layer index l at the center of A direction.

图 8 S_1 波 ϵ L 点的平方振幅 $|\xi(l)|^2$ 随 m/M 的变化

Fig. 8 Attenuations of squared vibrational amplitueds $|\xi(l)|^2$ of S_1 vs layer index l for different values of ratio m/M at point L.

为了比较不同原子质量吸附对 S_1 、 S_2 和 S_3 波振幅衰减情况的影响,图 S_1 、 S_2 和 S_3 没在不同吸附原子质量下,振幅随原子层的衰减情况。 S_1 和 S_2 没的振幅主要分布在表面原子上,随着吸附原子质量的增加,平方振幅随原子层的衰减也越大。而 S_3 波的振幅主要分布在第二层原子上,随着吸附原子质量的改变,其平方振幅随原子层衡的衰减几乎没有变化。

Fig. 9 Attenuations of squared vibrational amplitudes $|\xi(l)|^2$ of S_2 vs layer index l for different values of ratio m/M at the center of Δ direction.

|ξ(l)|2 随 m/M 的变化

Fig. 10 Attenuations of squared vibrational amplitudes $|\xi(l)|^2$ of S_3 vs layer index l for different values of ratio m/M at point L.

 $|\xi(l)|^2$ 随 m/M 的变化

参考文献

- [1] Ibach H. and Rahman T. S., in 5th International Conference on Solid Surfaces, Ed by R. Vanselow and R. Howe, Vol. 35, P. 455, Springer, Berlin, 1985.
- [2] Toennies J. P., J. Vac. Sci. Technol., B2(1984), 1055.
- [3] Fasolino A. and Tosatti E., Phys. Rev., B35(1987), 4264.
- [4] Black J. E. et al., Surf. Sci., 115(1982), 161.
- [5] Black J. E. et al., Surf. Sci., 192(1987), 541.
- [6] Ernst H. J., Hulpke E. and Tonnies J. P., Phys. Rev. Lett., 58(1987), 1941.
- [7] Smith R. J. et al., Phys. Rev. Lett., 58(1987), 702.
- [8] Alldrege G. P., Allen R. E. and deWette F. W., Phys. Rev., B4 (1971), 1682.
- [9] Zarestky J. et al., Phys. Rev., B28(1983), 697.

STUDY ON PHONON DISPERSION OF CLEAN AND MONOLAYER ADSORBED Mo (001) SURFACE

ZI JIAN, ZHANG KAIMING
(Department of Physics, Fudan University, 200433, Shanghai, China)

ABSTRACT

Using the nearest and next nearest neighbor central interactions, phonons of clean Mo(001) surface are studied. As a primary approximation, the effects of different adsorbed atom masses on surface phonons are discussed by a simple mass defect model.