红外研究 Chie. J. Mirared Ros,

YBa₂Cu₃O₇₋₈体系中 620~640 cm⁻¹ 红外谱峰本质的研究*

陈建民 赵永刚 赵新安 谢雷鸣

(中国科学院上海冶金研究所,上海)

摘要——在群论分析的基础上,研究了62~640 cm⁻¹ 红外光谱峰的峰型、峰 频、峰半宽度及强度随淬火温度的变化规律. 证实了在YBa₂Ou₃O₇₋₈ 处于正 文相时,该峰本质上是 a 轴 Ou-O-Cu 局域模 B_{3u} 和一维 Cu-O 准局域模 B_{2u} 选加而成,处于四方相时,两模简并成一个模.并讨论了YBa₂Ou₃O₇₋₈ 中载 流子对入射红外辐射的屏蔽效应.

关键词——YBa₂Cu₃O₇- δ 体系,群论,红外光谱。

1. 引 言

在 YBa₂Ou₃O₇₋, 高 **T**₀ 氧化物体系中, 超导相 YBa₂Ou₃O₇₋, 具有层状、缺氧的钙钛矿 结构^[1], 超导电性、相结构与氧平衡浓度 7-δ 密切相关^[3,3], 因此, 对 YBa₂Ou₃O₇₋, 氧空位的 研究已成为十分热门的课题, Stavola 等人^[4]首次在 Ar 气氛处理的样品中发现了与氧振动 有关的 3 个红外吸收峰(6 30m⁻¹, 592cm⁻¹, 5 20 cm⁻¹). 施天生等人^[5]对不同热平衡温度 下淬火得到的 YBa₂Ou₃O₇₋, 样 品也发现了 p₁(6 **2**~640 cm⁻¹), p₂(590 cm⁻¹)和 p₃(550~ 580 cm⁻¹)3 个峰, 研究了它们与 YBa₂CuO₇₋, 超导性及相结构、峰位漂移、频率和各 Cu-O 键键长的关系; 对 p₁, p₂和 p₃的本质进行了比较深入的讨论,并指认了它所对应的 Cu-O振 动模式,从目前情况看, 对 p₂、p₃峰的指认比较一致^[4,5], 但对 p₁峰的指认尚未统一. Sta vola^[4] 等人认为 p₁和 p₂峰都产生于二维 OuO₂ 晶格的 Ou-O 振动模, 而施天生^[5] 等人认 为 p₁峰是 b 轴一维 OuO 链反对称振动模 B₃₄引起的.为此,进一步研究这些峰的本质, 对 弄清该超导体系的结构、声子谱及氧空位与超导电性的关系是十分必要的.

本文在群论分析的基础上,研究了不同淬火温度下 p1峰的峰型、峰频及半宽度随淬火 温度的变化规律,证实了在 YBa2Ou3O7-8处于正交相时, p1 峰实质上是 a 轴Ou-O-Ou 局 域振动模 B34 和 b 轴 Ou-O 一维链的准局域模 B24 叠加而成.

本文 1988 年 9月 14 日收到,修改稿 1989 年 1月 16 日收到。

^{*}本工作得到国家超导中心资助。

2.实验

本文所用的红外测试样品是用 Y:Ba:Ou=1: 2:3 的羟基碳酸盐共沉淀粉经过烘干、焙烧、压块、最后在空气中 920℃ 烧结 18 小时炉冷制成的, T₀ 在 90 K 以上, X 射线相分析表明, 样品是单相 YBa₂Ou₃O₇₋₈ 正交结构.

等时退火在管状炉中进行,试样在各恒定温度下均保温 10 小时,然后连同石英管一 起快速淬入冰水中,以得到氧合量不同的样品.试样研磨成粉状,与 KBr 搅拌后压制成 ~φ13 mm 的薄园片,作为待测样品.红外光谱的测量在室温下进行,扫描 300 次,分辨率 为 4 cm⁻¹.

3. 群论分析

当 $\delta=0$ 时,正交结构 YBa₂Cu₃O₇ 属于 D_{2n} 群,在 Γ 点(K=0)有 7 个 Cu-O 伸缩振动 模式,其中有 4 个(B_{1u} , B_{2u} , $B_{2u'}$, $B_{3u'}$)是红外活性的,另外 3 个 (A_q , P_{2q} , B_{3q})是喇曼活 性的. B_{1u} 表示 c 轴上 O-Cu-O 的反对称振动模, $B_{2u'}$ 和 B_{3u} 表示 Y 和 Ba 原子层间二维 CuO₃ 网络铜氧反对称振动模, B_{2u} 表示 b 轴一维 Ou-O 链中铜氧反对称模.如果进一步考 虑 $\delta \neq 0$ 的情况,即氧原子在 a 轴上也有一定的占据率,由于 $a \neq 0$,因而 a 轴上氧原子引起 的另一个新振动模 B_{3u} 不和 B_{2u} 简并,并且 B_{3u} 为局域振动模.在四方相中, B_{2u} 和 B_{3u} 相 互等价,转变成一个模, $B_{2u'}$ 和 $B_{3u'}$ 简并成 E_u 模,这样,红外活性的振动模减少到 3 个 (B_{1u}, B_{2u}, E_u).

在 YBa₂Cu₃O₇₋₃ 的红外光谱中, p_3 峰同时存在于正交相和四方相中, 而 p_2 只有在四方 相才出现, 根据其频率与键长及峰频与淬火温度的变化关系, 我们认为把 p_3 和 p_2 峰分别指 认为沿 c 轴 O-Cu-O 的反对称振动模 B_{1u} 和 OuO₂ 网络中 E_u 模是正确的. 这使我们很 自 然地想到, 当 YBa₂Cu₃O₇₋₃ 中 $\delta \leq 0.5$ 时, p_1 峰应该是余留的 B_{2u} 和 B_{3u} 的叠加, 这一指认 不同于 Stavola^[5] 和 Shi^[6] 的结果, 我们的实验支持了这一模型.

4. 讨论与证明

4.1. p1 峰峰型随淬火温度的变化

图1给出了不同热平衡温度下 YBa₂Ou₃O₇₋₈ 样品的红外光谱的3个特征吸收峰 p_1, p_9 和 $p_3, \& X$ 射线相分析可知, p_2 峰仅存在于四方相,这一结果与文献[5] 基本一致. 注意观 察图1中的 p_1 峰,当淬火温度低于 750°C(即 YBa₂Ou₃O₇₋₈ 呈正交相)时, p_1 峰明显地由 频率差不多的两个峰(p_1' 和 p_1' 峰)叠加而成. 在 $\delta < 0.5$ 时,晶格常数 a 小于 b,因而频率略 高的 p_1' 峰属于 a 轴上的 Cu-O-Cu 局域振动模 B_{3u} ;频率略低的 p_1' 峰对应于铜氧 一维 链 B_{3u} 模. 用非线性函数最小二乘法分解 p_1 峰示于图 2.

从不同平衡温度下, a、b 轴氧的占据率实验数据^{□3} 可以推得:在热平衡温度小于 400 ℃ 时, a 轴上氧占据率很小,而 b 轴缺氧较多,可以产生准局域振动模,正是这个原因使 p⁴ 峰的出现先于 p⁴ 峰.随淬火温度的进一步升高, a 轴的氧占据率很快增加, p⁴ 峰的强度渐渐

(b) The frequency shifts of peaks p'_1 and p'_1 vs T_a .

3.3

变强;另一方面 pi 峰是局域振动模,它的半宽度小于 pi 峰,这也使得 pi 峰峰高很快超过了 pi 峰.

究

4.2 p1 峰频率随样品淬火温度的变化

p₁峰的峰频随样品淬火温度的变化示于图 3(a),从图中可以看到,p₁峰的峰频在700 ~750℃ 漂移行为不同于其他温区;而该温区恰好对应于正交相-四方相的相变处.图 3(b) 表示由 p₁峰分解成的 p₁和 pỉ峰峰频随淬火温度的变化,该图清楚地表明,在相变区,p₁和 pỉ 峰峰移方向相反,这与晶格常数 a、b 的变化趋势吻合⁶⁰.在正交-四方相转变区,晶格常数 a 随淬火温度升高而增大,而 b 却相反,这使 p₁ 峰在相变区随淬火温度升高向低频移动. 而 pỉ 峰则向高频方向移动,这一效应使得它们的叠加峰 p₁ 在相变区峰频与淬火温度不敏 感,从文献[5]中的图 5 也可看出这一现象.

4.3 p'_1 和 p''_1 峰宽随淬火温度的变化

如果 p'_1 峰对应于 a 轴 Cu-O-Cu 局域振动模 B_{3u} , 而 p''_1 峰对应于 b 轴一维 Cu-O 链准 局域模 B_{2u} ,那么它们的峰宽应有差别.由于 p'_1 对应于局域模, p''_1 峰对应于准局域模,因而 p'_1 峰宽小于 p''_1 峰宽.并随样品淬火温度升高即 b 轴一维铜氧链缺氧的增加, p'_1 渐渐趋于局 域,峰宽也渐渐减小,到四方相, p'_1 和 $p''_1 完全重合, p''_1 转变成局域振动模. <math>p'_1$ 峰峰宽应对样 品氧含量的变化不灵敏.图 4 给出 p'_1 和 p''_1 峰半宽随淬火温度 T_a 的变化结果,与预计结果 完全吻合.图中我们只给出了淬火温度大于 500°C 时的拟合峰 p'_1 和 p''_1 的峰宽结果,因为 在较低淬火温度时,红外吸收峰比较弱,加上噪声叠加等因素,使峰宽误差较大.

以上我们从峰型、峰移和半峰宽度随样品淬火温度的变化,证实了 YBa₂Ou₈O₇₋₈ 呈正 交相时, p_1 峰确是由两个峰叠加而成: p_1' 对应于 a 轴 Cu-O-Cu 局域振动模 B_{3u} , p_1' 产生于 Cu-O 一维链准局域振动模 B_{2u} . 如不考虑其他效应,原则上 p_1' 峰和 p_1'' 峰的强度与 a、b 轴 氧占据率一一对应,可以利用不同淬火温度下, p_1' 和 p峰的强度反过来计算 a、b 轴的氧占 据率. 图 5 为 p_1 、 p_2 峰强度随样品淬火温度的变化曲线. 当 $T_q > 750^{\circ}$ C 时,样品具有四方 相, p_1 峰强度应该随淬火温度的升高而下降; 但实验结果表明, 当 $T_q > 750^{\circ}$ C 时, p_1 峰强度

24**4**

8卷

不但不减小,反而迅速增强,直到 $T_q > 850^{\circ}$ C 时才下降,这表明还有一个效应在影响红外吸收峰的强度. Z. Z. Wang 等人^[77]测量了霍尔系数 $R_{\rm H}$ 随氧含量 7-δ 的变化,他们发现当δ ≈ 0.5 时, $R_{\rm H}$ 陡直上升,说明样品的载流子浓度很快下降.这一效应使载流子对红外入射的吸收减弱,造成红外峰强度增加.考虑到载流子对入射红外辐射的吸收作用(即载流子对声子的屏蔽作用),红外峰强度与氧含量的一一对应关系将破坏,对文献[5]中 p_1 峰尤其是 p_2 峰所对应的氧空位的形成能应适当修正.

5. 结 论

在群论分析的基础上,研究了不同淬火温度下, p1峰的峰型、峰频、峰宽度和峰强随淬火 温度的变化规律,证实了在 YBa₂Cu₃O₇₋₈ 处于正交相时, p1 峰实质是 a 轴上 Cu-O-Ou 局 域模 B_{3u}和 b 轴 Cu-O 一维链的铜氧准局域模 B_{2u} 的叠加,四方相时两峰合为一峰,在淬火 温度 T_q>750°C 时, p1 峰强度的异常增强是由于金属-半导体相变导致载流子浓度下降,使 声子屏蔽效应减弱而引起的.

致谢---感谢蔡培新同志对本工作的帮助。

参考文献

[1] Siegrist T. et al., Phys. Rev., B35 (1987), 7137.

[2] Jörgensen J. D. et al., Phys. Rev., B36 (1987), 3608.

[3] O'Bryan H. M. and Gallagher P. K., Adv. Cor, Mater., 2 (1987), 640.

[4] Stavola M. et al., Phys. Rev., B36 (1987), 850.

[5] Shi T. S. et al., Phys. Stat. Sol., (b) 148 (1988), 715.

[6] Sawada H. et al., Jap. J. Appl. Phys., 26 (1987), 1054.

[7] Wang Z. Z., Iayhad J. and Ong N. P., Phys. Rev., 36 (1987), 7222.

STUDY ON THE NATURE OF 620~640cm⁻¹ IR ABSORPTION PEAKS IN YBa₂Cu₃O₇₋₃ SYSTEM

OHEN JIANMIN, ZHAO YONGGANG, ZHAO XINAN, XIE LEIMING (Shanghai Institute of Metallurgy, Academia Sinica, Shanghai, China)

ABSTRACT

On the basis of group theory analysis, the variation of the shape, frequency shift, linewidth and intensity of $620 \sim 640 \text{ cm}^{-1}$ IR absorption peak (p_1) in YBa₂Ou₃O₇₋₈ system vs quenching temperature has been systematically studied. It is verified that this peak consists of two overlapped peaks as YBa₂Ou₃O₇₋₈ is of orthorhombic phase at $\delta < 0.5$; one located at high frequency is coorresponding to the localized mode B_{3u} of Ou-O-Cu vibration centre between Ba layers on \boldsymbol{a} axis, and the other one at low frequency is corresponding to the quasi-localized vibration mode B_{2u} of Ou-O bond induced by the oxygen-vacancy in one dimensional Cu-O chain on \boldsymbol{b} axis. These two modes are identical to each other in the tetragonal phase. Meanwhile, it has been also found at orthorhombic-to-tetragonal (O-T) transition that the intensity of the p_1 peak, which should begin to reduce, still increases. This anomalous phonomenon is attributed to the weakening of the effect of carrier screening on infrared radiation.

8 卷