$Ti_x Y_{1-x} Ba_2 Cu_3 O_{7-y}$ 的远红外反射光谱*

俞志毅 叶红娟 陆 卫 沈学础

(中国科学院上海技术物理研究所红外物理开放研究实验室,上海)

李光远

(华东化工学院物理系,上海)

摘要——报道了非稀土元素 Ti 部分替代稀土元素 Y 的 Ti_eY_{1-e}Ba₂Ou₃O_{7-y} (x=0.2, 0.4)超导体的远红外反射光谱.观察到至少7个声子结构,分别位 于 136 cm⁻¹、154 cm⁻¹(或 151 cm⁻¹)、193 cm⁻¹、230 cm⁻¹、280 cm⁻¹、293 cm⁻¹ 和 337 cm⁻¹(或 345 cm⁻¹).结果表明,该超导体的能隙值 24~198 cm⁻¹,对应 2 $\frac{1}{k_{u}T_{c}}$ ~3.4.还对声子结构的物理起因作了探讨.

关键词——高To超导材料,远红外反射光谱,声子结构。

1. 引 言

目前, 远红外光谱和红外光谱方法已经成为研究高 T_c 超导体的声子结构及超导能隙的 主要手段之一^(1,2).为了研究元素替代对 Y-Ba-Cu-O 超导体物理性质的影响, 已有稀土元 素 R(R=Sm, Gd, Eu, Ho, Er, …)替代元素 Y 的超导体及其远红外反射光谱的报道^(3~5). 然而非稀土元素替代元素 Y 的高 T_o 超导体及其远红外光谱研究至今未见报道.

本文首次报导非稀土元素 Ti 部分替代元素 Y 的 Ti_xY_{1-x}Ba₂Cu₃O_{7-y}(x=0.2, 0.4)高 T_c 超导体的远红外反射光谱,以期对其晶格振动行为及高温超导机制的研究提供有用的信 息.结果表明: 在测量波数范围内,至少存在7个声子结构;该超导体至少存在一个能隙,大 约在 198 cm⁻¹, 对应 2 $d/k_{x}T_{c}\approx3.4$.本文还对上述声子结构的来源进行了讨论.

2.实验

本工作所用样品是由 Y₂O₃, BaCO₃, CuO 和 TiO₂ 按名义配比混合在高温烧结而成的. 详细制备过程如下: 首先在 930°C 温度的空气中预烧 24 小时, 经粉碎研细重新压片 后在

本文 1988 年7月 28 日收到。

[•] 国家自然科学基金资助课题。

940°C 的氧气流中烧结 20 小时,然后随炉自然冷却,十几小时后样品温度从 940°C 降 至 200°C. 这样制成的块状样品是 X 射线衍射测量表明样品中已基本上不存在游离的 TiO₂, 而成为 Ti_eY_{1-a}Ba₂Cu₃O_{7-y} 多晶样品.并且, x=0.2 和 x=0.4 时,材料呈正交相结构; x=0.6 时则从正交相转变为四方相. 采用标准四端法测量样品的直流电阻随温度的变化,得 到 x=0.2 和 x=0.4 样品的超导转变温度分别为 $T_0 \approx 89$ K 和 $T_0 \approx 84$ K. 即样品的 T_0 随 其中 Ti 含量的提高而逐渐下降.

远红外反射光谱是用 Nicolet 200 SXV 真空型傅里叶变换光谱仪测量的,测量波数范 围为 50~360 cm⁻¹,光谱分辨率为 2 cm⁻¹.待测样品置于可从 4.2K 到室温连续变 温的 Oxford 光测杜瓦瓶内的冷指上。低温反射装置⁶³的入射角约为 15℃.干涉 仪 分束 片为 6μm 厚的 Mylar 膜、探测器为液氮致冷的 Ge 掺 Ga 测辐射热计。

3. 结果与讨论

图1给出 *x*=0.2 和 *x*=0.3 的 Ti_eY_{1-x}Ba₂Qu₃O_{7-y} 样品在正常态以及超导态下的远红 外反射光谱.为便于比较,图1右上方示出 YBa₂Cu₃O_{7-y} 的结果.图中 *x*=0.2 样品的光谱 向上略作平移,以便看得更清晰.从图1我们看到,两个样品的反射率均随波数的增大而减 小,而在这个连续变化的背景上叠加了一些声子结构.在50~360 cm⁻¹ 范围内至少可以观 察到7个声子结构(I, II, ..., VII).同时,样品在8处显示了能隙结构.表1列出了上述

表 1 Ti_aY_{1-a}Ba₂Cu₃O_{7-y} 远红外反射光谱中的声子结构及能隙结构的位置(cm⁻¹) Table 1 Positions of phonons and energy gaps of Ti_a Y_{1-a} Ba₂ Cu₃ O_{7-y}

in the FIR reflection spectra (x)	x = 0.0.2.	(0.4) (in cm ⁻¹).
-------------------------------------	------------	-------------------------------

 x	$T_{c}(\mathbf{K})$	I	II	III	IV	v	VI	VП	S,	$2\Delta/k_BT_C$	
0	93		1 59	195		267	277	313	209	3.4	
 0.2	89	136	154	193	230	280	293	3 37	200	3.4	
0.4	84	136	151	193	230	280	293	345	198	3.5	

表 2 Ti_a Y_{1-a} Ba₂ Cu₃O_{7-y} 远红外声子结构物理起源的判定结果

Table 2 Assignment of the phonons of $Ti_x Y_{1-x} Ba_2 Cu_0 O_{7-y}$.

声子结构	* 1, ¹	Ш	Ш	IV .	A AI AII
初步判定	Ti 离子-O 离子振动	Ba离子O 离子振动	Y 离子0 离子振动	Ti 离子-O 离子振动	Ca-O 键振动

结构的位置.

从图 1 及表 1 可以清楚地看到, 136 cm⁻¹ 和 230 cm⁻¹ 处的声子结构是 YBa₂Cu₈O_{7-y} 所 没有的,因而与 Ti 的替代有关. 随着 *** 从 0.2 增加到 0.4, 136 cm⁻¹ 及 230 cm⁻¹ 处的峰增 强,同时 193 cm⁻¹ 处的的峰却随 *** 增加而减小. 这一事实说 明 193 cm⁻¹ 峰 与 Y 有关,而 136 cm⁻¹ 及 230 cm⁻¹ 两峰与 Ti 有关. 稀土元素完全替代元素 Y 的 RBa₂Cu₃O_{7-y} 的 远 红 外光谱研究表明⁽⁵⁾YBa₂Cu₃O_{7-y} 在 195 cm⁻¹ 的声子结构与 Y 有关,以上判定与这一结果是 一致的. 根据以往的讨论^[1~5],我们认为 154 cm⁻¹ (或 151 cm⁻¹) 峰与 Ba 有关, 280 cm⁻¹、 293 cm⁻¹ 及 337 cm⁻¹(或 345 cm⁻¹) 处的声子结构则与 Cu-O 键的低频振动 有关. 表 2 列 出了声子结构 I~VII 的判定结果.

4. 结 语

本文报道了 $Ti_{x}Y_{1-a}Ba_{2}Cu_{3}O_{7-y}(x=0.2, x=0.4)$ 超导样品的远红外反射光谱. 在 50 ~360 cm⁻¹ 范围内观察到至少7 个声子结构,对它们的可能来源作了讨论,认为它们分别与 Ti 离子-O 离子振动、Ba 离子-O 离子振动、Y 离子-O 离子及 Cu-O 键的低频振动有关. 结果表明: $Ti_{a}Y_{1-a}Ba_{3}Ou_{3}O_{7-y}$ 至少存在 1 个位于 ~198 cm⁻¹ 的能隙结构, 对应的 24/k_a T_{0} ~ 3.4.

致谢——本所四室低温车间为本项研究提供了液氮,作者深表谢意。

参考文献

- [1] 叶红娟、陆卫、俞志毅、沈学础等, Phys. Rev., B36 (1987), 8802.
- [2] 叶红娟、陆卫、俞志毅、沈学础等, Chin. Phys. Lett., 5 (1988), 161.
- [3] Genzel Is. et al., Solid State Commun., 63 (1987), 843.
- [4] Cardona M. et al., Solid State Commun., 64 (1987), 727.
- [5] 叶红娟、俞志毅、陆卫等, 物理学报 38(1989), 5.
- [6] 陶风翔、沈学础,红外研究,5(1986),65.

8卷

FAR-INFRARED REFLECTION SPECTRA OF $Ti_x Y_{1-x} Ba_2 Cu_3 O_{7-y}$ SUPERCONDUCTORS*

YU ZHIYI, YE HONGJUAN, LU WEI, SHEN XUECHU

(Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Academia Sinica, Shanghai, China)

LI GUANGYUAN

(Physics Department, East-China University of Chemical Technology, Shanghai, China)

ABSTRACT

The far-infrared reflection spectra of high T_c superconductors $\operatorname{Ti}_{x}\operatorname{Y}_{1-x}\operatorname{Ba}_{2}\operatorname{Cu}_{3}\operatorname{O}_{7-y}$ (x=0.2, 0.4) are reported. At least seven phonon structures have been observed at about 136, 154 (or 151), 193, 230, 280, 293, and 337 cm⁻¹. The energy gap s estimated as $24 \approx 198 \,\mathrm{cm}^{-1}$, corresponding to a ratio of $24/k_BT_c \approx 3.4$. The physical origin of the phonons is discussed.

^{*} Project supported by the Fund of the Chinese National Natural Sciences.