$YBa_2Cu_3O_x$ 红外吸收谱随氧 含量变化的研究

赵永刚 施天生 顾为芳 蔡培新 傅耀先 谢雷鸣

(中国科学院上海冶金研究所,上海)

摘要——YBa₂Cu₃O₂ 红外吸收谱中有两个特征吸收峰 $P_1(620 \sim 642 \text{ cm}^{-1})$ 、 $P_3(540 \sim 585 \text{ cm}^{-1})$,它们的频率和 YBa₂Cu₃Q₂中的氧含量密切相关,并且 P_1 、 P_3 吸收峰的频率在不同范围内分别对应 YBa₂Cu₃O₂ 的正交相、四方相及正交相 向四方相的过渡。根据实验结果,我们提出了一个简单模型来解释 YBa₂Cu₃O₂ 的 T_c 值与其氧含量 α 之间的 S 形关系曲线。

关键词——YBagOusO,红外吸收,超导。

1. 引 言

自从 Bednorz^[1] 等人发现高 T_e 超导材料以来,这方面的研究已取得了相当大的进展, 研究结果表明: YBa₂Cu₃ Q_e(6 $\leq a \geq 7$)具有缺氧的钙钛矿结构^[2], Ba-Ba 层间的一维铜氧 链和 YBa₂Cu₃O_e 的 90 K T_e 值是直接相关的^[3],随着温度升高,其平衡氧含量 a 减小,氧原 子在 Ba-Ba 层间 a 轴和 b 轴上的占有率趋于相等,一维铜氧链逐渐被破坏,当氧含量 a 减 小到 6.5 左右,即发生一可逆的正交相——四方相转变^[4],并且 YBa₂Cu₃ O_e 的 T_e 值随氧含 量 a 的减少而相应地降低^[5,6],这说明 YBa₂Cu₃O_e 中氧含量对该材料的相结构和超导特性 具有决定性的作用^[4,7~9]。

本文研究了 YBa₂Cu₃O₂ 材 料 红 外 吸 收 谱 中 三 个 特 征 吸 收 峰 $P_1(620 \sim 642 \text{ cm}^{-1})$ 、 $P_2(590 \text{ cm}^{-1})$ 、 $P_3(500 \sim 585 \text{ cm}^{-1})$ 与其氧含量、相结构及超导特性的对应关系。其中, P_1 、 P_3 峰的频率随 YBa₂Cu₃O₂ 的氧含量变化而单调漂移,并且它们在不同的频率范围内分 别 对应 YBa₂Cu₃O₂ 的正交相、四方相及正交相向四方相的过渡区, P_1 、 P_2 吸收峰的出现和增 强分别表征一维铜氧链和二维铜氧网络被破坏的程度。这和 YBa₂Cu₃O₂ 的 T_c 值变化密切 相关。因此,利用三个特征吸收峰 P_1 、 P_2 、 P_3 ,我们可以估计 YBa₂Cu₂O₂ 中的氧含量,也 可以推测 YBa₂Cu₃Q₄ 的相结构和超导特性^[100]。根据红外研究结果,我们提出了一个简单模 型来解释 YBa₂Cu₃O₆ 的 T_c 值和其缺氧状况的关系。

È

本文 1988 年 1月 25 日收到。

◎2. 实验与结果

YBa₂Cu₃O_e 样品是采用硝酸盐共沉淀方法^{Cu1}制备的,将原子比Y:Ba:Cu=1:2:3 的 羟基碳酸盐的混合物在空气中在 910°C 焙烧 8h 后炉冷,再把焙烧粉研磨、压片,在空气中 920°C 煅烧 18h 后炉冷。样品 $T_e \gtrsim$ 90 K,X 射线衍射相分析表明样品具有单一的正交相, 样品的红外吸收谱中也未发现氢氧化物和碳酸盐的吸收峰。

将块状样品放在直径 2 cm, 长 1 m 的石英管封口端附近对 YBa₂Cu₃O_e 样品进行热处 理。温差电偶缚在石英管外部与样品在同一位置。 样品在各温度均保温 10 h, 使之达到热 平衡, 然后将石英管快速插入冰水中淬火, 淬火后, 磨去样品表面, 以消除表面在淬火过程中 所受的影响。

红外样品的制备是采用 KBr 压片法,将 YBa₂Cu₃O_e 粉和 KBr 粉以 1:100 的重量比配制,磨细后,压制成片,其重量为 250 mg,直径为 13 mm。利用 NICOLET 7199C 型傅里叶 变换红外光谱仪做室湿测量,分辨率为 4 cm⁻¹,扫描次数为 300 次。

图 2 P₁、P₃峰的频率随淬火温度的变化 Fig. 2 Variation of frequencies of P₁ and P₃ peaks with quenching temperature.

图1是YBa₂Cu₃O_e样品在不同温度淬火 后的室温红外吸收谱。由图可见,有三个红外 特征吸收峰 P₁(620~642 cm⁻¹)、P₂(590 cm⁻¹)、 P₃(540~585 cm⁻¹)。随着淬火温度升高,P₁峰 的强度增大,频率单调地向高频端移动;P₂峰是 在700°C 左右开始出现的,其强度增加很快;P₃ 峰的强度无明显变化,但频率向低频端单调移动。 另外,随淬火温度的变化,YBa₂Cu₃O_e的红外吸 收谱基线也发生明显的变化。图1中当淬火温度

较高时,在400 cm⁻¹ 处出现一强吸收,这一现象重复性很高好,我们正在深入研究它的原

· 316 ·

因。

图 2 为 P₁、P₃峰的频率随淬火温度 T_q的变化。图 3 为 P₁、P₃峰的强度随淬火温度 T_q的变化。

作为一种辅助手段,我们利用粉末 X 射线衍射相分析技术对不同温度的淬火试样进行 了测试,发现 650℃ 以下的淬火试样具有正交相结构,650℃~800℃ 之间的淬火试样具有 正交相向四方相过渡的性质,800℃ 以上的淬火试样则具有四方相结构。

我们在液氮温区以上对淬火试样进行了测试,发现,550℃以上淬火的试样在液氮温区 失超,550℃以下淬火的试样随淬火温度升高*T*。值降低,并且转变温区变宽。图4是 55●℃以下淬火试样的 *B*--*T* 曲线。

图4 550℃以下淬火试样的 R-T 曲线

Fig. 4 *R-T* curves of quenched YBa₂Cu₃O_s below 550°C.

我们曾利用热天平称重法测量了 YBa₂Ou₈O₄ 试样在空气中不同温度下的氧含量^[12],其 结果见表 1。

Table 1 Oxygen content in $YBa_2Cu_3O_x$ at different temperatures in the air

温度 (°C)	350	400	450	500	550	600	650	700	750	800	850	900	940
氧 含 量 <i>x</i>	6.82	6.79	6.76	6.71	6.68	6.58	6.50	6.44	6.38	6.29	6.22	6.15	6.09

表 2 P1、P3 峰频率和 YBa2Cu3O2 的相结构及超导特性的关系

Table 2 The relationship between frequencies of P_1 and P_3 peaks and the phase structure and superconducting characteristics of YBa₂Cu₃O_z

频 率 (cm ⁻¹)				相	结	构	及	超	导	特	性		
	Ē	E 交 相 正交相→四方相过渡区								四方	相	$T_c > 78 \mathrm{K}$	
<i>P</i> ₁	620~635			635~639						639~(642	620~628	1.12
P ₃	557 ~ 585				548~557					540~ 5	548	573 ~ 585	

根据以上结果,我们可以建立 YBa₂Ou₃O₅ 红外特征峰和它的氧含量、相结构和超导特性的对应关系。图 5 是 P₁、P₃峰的频率随氧含量的变化曲线; 氧含量 取 自表 1。表 2 说明了 P₁、P₃峰的频率范围和 YBa₂Cu₃O₅ 的相结构及超导特性的对应关系。

图 5 P_1 、 P_3 峰的频率随氧含量的变化曲线 Fig. 5 Variation of frequencies of P_1 and P_3 peaks with oxygen content.

3. 讨论

在文献[10]中,我们已对 YBa₃Ou₃O_a 红外吸收谱中的三个特征峰 P_1 , P_3 , P_3 进行了确 认,认为 P_1 峰源于 Ba-Ba 层间 a-b 平面出现氧空位后所引起的空位近邻 Cu-O 的 准局 域 振动; P_3 峰是由 Ba-Ba 层间沿 c 轴的 O-Cu-O 反对称振动产生的;而 P_3 峰是由于 Y-Ba 层间二维铜氧网络出现氧空位后所引起的空位近邻 Cu-O 的准局域振动产生的。

随氧含量 x 的减少,晶格常数 b 逐渐变小^[5], Cu-O 键变强,从而使 P₁ 峰向高频端移动。随氧含量 x 减少,晶格常数 c 增大^[5],而使得 P₃ 峰向低频端移动。由于 P₁、P₂ 峰都是因氧空位的产生而出现的,因此它们的强度随氧含量 x 减少,即随氧空位的增多而增强。而 P₃ 峰和氧空位无直接联系,它本身的局域性比较好,因此,随着氧含量 x 的减少,它的强度 变化不大。

如上所述, P₁、P₃峰的频率与 YBa₂Cu₈O₆ 材料的氧含量 *a* 有单调的对应关系,因此我 们可以用来估计 YBa₂Cu₈O₆ 材料中的氧含量。根据 YBa₂Cu₈O₆ 的氧含量和它的晶体结构 及超导特性之间的对应关系^{[4][6]},我们可以利用 YBa₂Cu₃O₆ 的红外特征峰来推测它的相结 构和超导特性(见表 2)。淬火试样的 X 射线衍射相分析表明: 650°C 以下的淬火试样具有 正交相结构;在 650°C 淬火试样的红外吸收谱中, P₁峰的频率在 635 cm⁻¹ 左右; P₃峰的频 率在 657 cm⁻¹ 左右;根据 P₁峰、P₈峰的频率随淬火温度的漂移(见图 2),对于具有正交相

· 318 ·

结构的 YBa₂Cu₃O_e, P_1 , P_3 峰的频率分别在 620~635 cm⁻¹ 及 557~585 cm⁻¹ 范围内。同 样, 对于正交相向四方相过渡的 YBa₂Cu₃O_e, P_1 , P_3 峰的频率分别在 635~639 cm⁻¹ 及 548~557 cm⁻¹ 范围内。而对于四方相结构的 YBa₂Cu₃O_e, P_1 , P_3 峰的频率则分别在 639~642 cm⁻¹ 及 540~548 cm⁻¹ 范围内。 液氮温区超导特性测量表明: 550°C 以上淬火 试样在液氮温区失超; 550°C 淬火试样的红外吸收谱中, P_1 峰频率在 628 cm⁻¹ 左右; P_3 峰 的频率在 573 em⁻¹ 左右。因此, 对于 T_e 值在液氮温度以上的 YBa₂Cu₃O_e, 其 P_1 , P_3 峰的 频率分别在 620~628 cm⁻¹ 及 573~585 cm⁻¹ 之间。

研究结果表明: YBa₂Cu₃O_e 的超导转变温度和它的缺氧 状况 有关, YBa₂Cu₃O_e 具 有 90 K 的 T_o 是和其结构中的一维铜氧链密切相关的^[33], 并且, 其中的氧含量变化会导致其 T_o 值的变化^[5,6,11,133]。D. C. Johnston^[137] 研究了不同氧含量 x 的 YBa₂Cu₃O_e 的 T_o 变化, 他认 为: 如果仅仅是一维铜氧链决定 YBa₂Cu₃O_e 的高 T_o, 那么, 对于不同的氧含量 x, 都应有 $\frac{\partial^2 T_o}{\partial x^2} < 0$, 但实验结果与此不符。因此, YBa₂Cu₃O_e 材料具有高 T_o 是一维铜氧链和二维铜 氧网络共同作用的结果。 B. Batlogg^[6] 也得到了和 D. C. Johnston 类似的研究结果 (见图 6)。

根据我们的结果^[10],即正交相中一维铜氧链上和四方相中二维铜氧网络上氧空位的形成能分别具 0.84 oV 和 0.08 oV 可知 8 7 位

成能分别是 0.34 eV 和 0.98 eV,可解释 T_c 值 与氧含量之间的关系。当氧含量较高时, YBa₂Ou₃O_e中的一维铜氧链较为完整,这时 T_c 值在90K 左右,随淬火温度升高,氧空位形成能 比较小的一维铜氧链上氧空位首先增多。淬火 温度较低时,增加的氧空位数目比较少, YBa₂Cu₃O_e的 T_c 值下降缓慢。当淬火温度逐 渐升高时,氧空位数目增加较多(见图 3 P_1 峰) 而使一维铜氧链受到较大的破坏,YBa₂Cu₃O_e 的 T_c 值很快从 90 K 下降到 60 K 左右。这时 二维铜氧网络上还未出现氧空位,它与 K₂NiF₄ 结构中的 La-Ba-Ou-O 的二维铜氧网络有相似 之处,具有 60 K 左右的 T_c 值,当淬火温度进一 步升高,YBa₂Cu₃O_e进入四方相区域时,二维铜

氧网络上出现氧空位,并且随淬火温度升高,氧空位增加很多(见图 8 P₂ 峰)使得网络被破 坏而失去 60 K 左右的 T_e值。我们可以总结成下列式子:

一维铜氧链+二维铜氧网络 $\rightarrow T_{c} \ge 90 \text{ K};$

破坏的一维铜氧链+二维铜氧网络 $\rightarrow T_{a} \approx 60 \text{ K};$

破坏的一维铜氧链+破坏的二维铜氧网络 → 失超:

由此, 解释了 YBa₂Cu₃O_e 的 T_e 值与它的氧含量之间的 S 形关系曲线(见图 6)。

另外,红外吸收方法检测 YBa₂Cu₃O_e中的氧含量、相结构和超导特性,具有样品用量 少、室温测量、速度快等优点。这种方法提供了超导线材中 YBa₂Cu₂O_e 的氧含量、相结构和 超导特性的信息,对线材制作工艺的改进起了一定的作用。 致谢——本工作得到了吴自良教授的指导,杨宏川、黄佶、谢晓明、李廷伟、钟福民、吴美英等 同志也在工作中给予很多帮助,中国国家超导攻关中心提供了研究经费,作者在此一并致 谢。 3

参考文献

- [1] Bednorz J. G. and Müller K. A., Z. Phys., B64(1986), 2:189.
- [2] Siegrist T. et al., Phys. Rev., B35(1987), 13:7137.
- [3] Schuller I. K. et al., Solid State Commu., 63(1987), 5: 385.
- [4] Jorgensen J. D. et al., Phys. Rev., B36(1987), 7:3608.
- [5] Sawada H. et al., Jap. J. Appl. Phys., 26(1987), 6:L 1054.
- [6] Batlogg B. in Novel mechanisms of superconductivity Wolf S. A. and Werder V. Z. eds. New York: Plenum Press, 1987.
- [7] Cava R. J. et al., Phys. Rev. Lett., 58(1987), 16:1676.
- [8] Gallager P. K. et al., Adv. Cer. Mater., 2(1987), 3: 632.
- [9] Wany Z. Z. et al., Phys. Rev., B36(1987), 13: 7222.
- [10] Shi T. S. et al., tobe published in Phys. Sbab. Sol. (b)
- [11] Kini A. M. et al., Inorganic Chemistry, 26(1987), 12: 1834.
- [12] Zhao Y. G. et al., MRS 1988 Spring Meebing, U. S. A., 1988.
- [13] Johnston D. C., Special adviatico research conference on high T_c superconductors, Italy, 1987.

VARIATION OF IR ABSORPTION SPECTRA OF YBa₂Cu₃O_x WITH OXYGEN CONTENT

ZHAO YONGGANG, SHI TIANSHENG, GU WEIFANG

CAI PEIXIN, FU YAOXIAN, XIE LEIMING (Shanghai Institute of Metallurgy, Academia Sinica, Shanghai, P. B. C.)

ABSTRACT

The frequencies of two characteristic IR absorption peaks $P_1(620 \sim 642 \,\mathrm{cm^{-1}})$ and $P_3(540 \sim 585 \,\mathrm{cm^{-1}})$ are found to be closely related to the oxygen content in YBa₂Cu₃O_s. The different frequency ranges of P_1 and P_3 peaks that correspond to orthorhombic, tetragonal and orthorhombic-tetragonal phases of the material are observed. A simple model based on the experimental results is proposed to explain the S-shaped ourve of T_6 vs s.