红外研究 Chin. J. Infrared Res.

一个改进的红外辐射传输计算方案

赵高祥 汪宏七

(中国科学院大气物理研究所)

摘要——本文提出一个大气红外辐射传输计算方案,将整个红外光谱区域 (100~2600 cm⁻¹)划分成两个宽的光谱间隔(100~980 cm⁻¹和 980~2600 cm⁻¹),由此,计算机时与原先的六波段辐射模式相比大为减少,而精度并不降低。

一、引 盲

在大气环流模式中进行辐射能量传输计算时,由于计算机的限制,目前还只能用一些简 化的辐射计算方案,当然,这类辐射计算方法除了所需机时少之外,还必须有相当好的精度。 在文献 [1] 中的辐射模式就是为了在环流模式中进行辐射计算而提出的。但即使是这种简 化的模式,在整个环流模式计算中,用于辐射传输计算(包括地球辐射和太阳辐射在内)所需 要的机时仍占整个机时的三分之一,甚至更多。因此,如何在保持辐射计算精度要求的情况 下,进一步减少辐射计算的时间,仍然是一项十分有意义的课题。

二、辐射传输方程的简化

不考虑大气对地球长波辐射的散射,并假定辐射场是与方位角无关的,则在平面平行大 气中的单色向上和向下辐射通量可表示为

$$M_{\nu,i}^{\uparrow} = M_{\nu,i+1}^{\uparrow} \tau_{\nu}(u_{i}) - \int_{P_{i}}^{P_{i+1}} B_{\nu}(T) \frac{d\tau_{\nu}[u(P_{i}, P)]}{dP} dP; \qquad (1)$$

$$M_{\nu,i+1}^{\downarrow} = M_{\nu,i}^{\downarrow} \tau_{\nu \setminus} u_i) - \int_{P_i}^{P_{i+1}} B_{\nu}(T) \frac{d\tau_{\nu}[u(P_i, P)]}{dP} dP;$$
⁽²⁾

式中,下标 i 表示大气层次; P 为大气压力; $M_{\nu,i}^{\dagger}$ 和 $M_{\nu,i}^{\dagger}$ 分别是在压力为 P_i 的层上、频率为 ν 的向上和向下辐射; B_{ν} 为普朗克通量; τ_{ν} 为漫射透过率; u 为大气中的有效吸收物质含量。由式(1)和(2),可以得出在频率为 ν_1 到 ν_2 的一个宽光谱间隔上有如下形式的简化辐射 传输方程,

$$M_i^{\uparrow} = M_{i+1}^{\uparrow} (1 - \varepsilon_i^{\uparrow}) + \varepsilon_i'' B_{ij}$$
(3)

本文 1987 年 12月 3 日收到。

$$\boldsymbol{M}_{i+1}^{\perp} = \boldsymbol{M}_{i}^{\perp} \left(1 - \boldsymbol{\varepsilon}_{i}^{\perp} \right) + \boldsymbol{\varepsilon}_{i}^{\prime\prime} \boldsymbol{B}_{i}, \tag{4}$$

这里, M¹ 和 M¹ 分别为宽光谱间隔中总的向上和向下辐射通量密度; B_i 为第 i 层大气在整 个光谱间隔中的总普朗克辐射通量; sⁱ 为第 i 层大气的等效宽带发射率,并假定它对向上和 向下辐射是相同的, sⁱ 和 sⁱ 则可看作是第 i 层大气对向上和向下辐射的等效宽带吸收率。 假定大气层对向上和向下辐射的吸收率相同,并用 sⁱ 来表示,它与 sⁱ 可以不相等,则最后 得到的辐射传输方程为

$$M_i^{\dagger} = M_{i+1}^{\dagger} (1 - \varepsilon_i') + \varepsilon_i'' B_i; \qquad (5)$$

$$\boldsymbol{M}_{i+1}^{\perp} = \boldsymbol{M}_{i}^{\perp} (1 - \boldsymbol{\varepsilon}_{i}') + \boldsymbol{\varepsilon}_{i}'' \boldsymbol{B}_{io}$$

$$\tag{6}$$

在式(5)和(6)中,右边第一项表示大气层对辐射的削弱;第二项为大气层本身发射造成的辐

射增加。

这样,只要得出各个大气层中的宽带通 量发射率 ɛ¼ 和 ɛ¼,加上边界条件

 $M_1^{\downarrow} = 0 \quad \text{fl} \quad M_{N1}^{\uparrow} = \varepsilon_{N1} B_{N1};$

就可以由已知的大气参数算出,大气中各层 在相应光谱间隔中的向上和向下的辐射通 量。在上面的式子中, *ε*_{N1}和 *B*_{N1}分别为地 面的发射率和普朗克通量,其它一些有关的 量见图 1。

求 s' 和 s'' 参数的方法与文献 [1] 中的 方法相似; 不同的是, 我们把光谱间隔的数目

从原来的 6 个(100~500 cm⁻¹; 500~835 cm⁻¹; 835~1000 cm⁻¹; 1000~1110 cm⁻¹; 1110~ 1255 cm⁻¹; 1255~2600 cm⁻¹) 减少到现在的两个(100~980 cm⁻¹; 980~2600 cm⁻¹)。在第 一个光谱间隔中,有作用的主要大气气体是 CO₂ 和 H₂O; 在第二个光谱间隔中,主要的吸收 气体为 H₂O 和 O₃, 因此, 对这两个光谱间隔, 都要考虑两种气体的重迭吸收影响。在文献 [1]中, 在每一种吸收气体单独作用时, 相应的宽带发射率 s' 和 s" 与吸收气体有效含量 44 之间用关系式

$$\log_{i}^{k} 10 \varepsilon_{i} = \sum_{m=0}^{M} a_{m} (\log 10u_{i})^{m}$$
$$\varepsilon_{i} = \sum_{m=0}^{M} a_{m} (\log 10u_{i})^{m}$$

或

来近似,而两种吸收气体的重迭吸收作用由下面的式子来考虑,

$$\varepsilon_{i\mathbf{B}} = b_1 \varepsilon_{i1} + b_2 \varepsilon_{i2} - b_3 \varepsilon_{i1} \varepsilon_{i2};$$

式中, ε₁₈ 为大气层的总的宽带发射率; ε₁₁ 和 ε₁₂ 分别为两种吸收气体单独起作用时的宽带 发射率。现在,我们把两种吸收气体有重迭吸收时,大气层的总的宽带发射率 ε' 和 ε' 直接 与大气层中这两种吸收气体的等效含量 ε₄₁ 和 ε₄₂ 联系起来,即

$$s_{i\underline{n}} = s_i = a_0 + \sum_{j=1}^{J_a} a_j (\log 10u_{i1})^j + \sum_{j=1}^{J_b} b_j (\log 10u_{i2})^j + \sum_{i=1}^{J_a} c_j [(\log 10u_{i1}) (\log 10u_{i2})]^j_{\circ}$$
(7)

在大气分成七层时 (P/P_{№1}=0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0), 对光谱间隔 1, 我们取 • 226 • $J_a = 2$, $J_b = 2$, $J_c = 2$; 对光谱间隔 2, 取 $J_a = 2$, $J_b = J_c = 1$, 式中, u_{11} 为水汽的有效含量, u_{12} 在第一波段表示 CO₂ 的有效含量, 在第二波段为 O₃ 的有效含量, 在大气层 中 的 Π_2 O, CO₂ 和 O₃ 的有效含量分别由下面的式子来计算,

 $u_{i,H=0} = 0.1Z(i)W_{H=0}(i)[(P_i + P_{i+1})/(101325/2)]^{0.9};$

 $u_{i, \text{CO}_{2}} = (273/T_{i})Z(i)(W_{\text{CO}_{2}}/330)[(P_{i}+P_{i+1})/(101325/2)]^{1.75};$

 $u_{i,0} = 46.6667 W_{0}(i) Z(i) [(P_i + P_{i+1})/(101325/2)]^{0.4};$

式中,Z(i)为大气层的厚度(km); P_i 和 P_{i+1} 为大气层的上下界压力(Pa); T_i 为大气层中的 平均温度(K); W_{HaO} 为大气层中平均水汽密度(g/m^3); W_{Oa} 为大气层中的平均臭氧密度 (g/m^3); W_{COa} 为大气中的 CO₂体积混合比(ppm)。

由逐线计算^[2],可以得到在不同的模式大气中,宽光谱间隔上的向上和向下辐射通量密度,然后,用式(5)和式(6),就可以确定各个大气层上的宽带通量发射率 ɛ',和 ɛ',这样,通过用最小二乘法求解由式(7)构成的方程组,就可以确定未知数 a₀, a_j, b_j和 c_j。表1列出了在大气划分成上述七层的情况下,分别对 5×10⁴ Pa 以上和 5×10⁴ Pa 以下,对两个波段得出的式(7)中的各项系数。

—— 波段 (cm ⁻¹)	压力	发射率	系数								
	(Pa)		<i>a</i> 0	<i>a</i> 1	a_2	b_1	b_2	c1	C ₂		
100~980	P < 5 x 104	e'	0.7561916	0.2741777	0.096867	0.2681698	-1.333875	7.769886	-0.0808051		
	1 < 3 × 10-	e''	0.2725061	0.048 36 17	0.0385289	-3,693977	-1.871773	1.464521	0.2262201		
	$P \ge 5 \times 10^4$	ε'	0.7637827	0.6164799	0.2888687	-0.2348657	-0.4144878	-11. 7 12227	-2.3218 1 3		
		ε''	0.7531887	0.6184701	0.2833295	-0.3067584	-0.4631035	-12.27837	-0.9328205		
980~2600	$P < 5 \times 10^4$	e'	0.692 276 4	0.2382239	0.0223306	C.0880021	/	0.0136291	/		
		e''	0.4456114	0.2212489	0.0363587	-0.0881745	1	-0.0316371	1		
	$P \ge 5 \times 10^4$	ε'	1. 3011 026	-0.1430047	0.2720171	0.344339	/	-0.2586157	/		
		ε "	1.2318335	-0.1244507	0.2634147	0.3268824	1	-0.2416052	/		

表1 对两个波段得到的式(7)中的系数值 Table 1 Coefficients in Eq. (7) obtained for two spectral intervals

有了这些系数后,就可以在大气参数已知的情况下,由式(7)计算大气层的宽带发射率 ε'和 ε''。这样,就能用式(5)和式(6),加上地面和大气顶的边界条件,计算大气中的长波辐 射通量密度,进而用下面的式子计算大气层中的长波辐射冷却率,

 $\frac{\Delta T_{i}}{\Delta t} = \frac{g}{c_{p}} \frac{M_{i}^{\downarrow} - M_{i+1}^{\downarrow} + M_{i+1}^{\uparrow} - M_{i}^{\uparrow}}{P_{i+1} - P_{i}};$

式中,g为重力加速度,c,为空气的定压比热。

三、结果和讨论

用上述方法,我们计算了一些模式大气中的长波辐射通量密度和加热率(见表 2)。表中的 a 列为用两波段辐射模式计算方法得到的结果, b 列为 Scott 等^[2] 用逐线计算方法得到

· 227 ·

表 2	对 100~980 cm ⁻¹	波段计算	得到的热带	模式ナ	大气的向下	,向上辐射通量	密度和	加热率
Table 2	Downward and	upward	radiation	flux	densities	and heating	rates	calculated
f	or the spectral in	terval 1	$00 \sim 980 \mathrm{cm}$	-1 in	the tropi	cal model at	mosphe	ere

$\mathcal{P}(105 \mathcal{P}_2)$	$T(\mathbf{K})$	$M^+(\nabla$	V/m²)	<i>M</i> [↑] (∇	V/m²)	加热率(K/day)		
1 (10-1 a)		a	Ъ	a	b	a	Ъ	
0.00005 0.1013 0.3039 0.5065 0.7091 0.9117 1.013	218.14 195.91 240.03 265.43 283.10 294.48 300.00	0.0 10.30 44.50 116.51 187.97 258.44 291.61	0.0 10.00 49.29 119.95 189.17 259.70 293.39	221.51 218.85 234.93 262.42 289.14 316.05 325.13	220.61 217.69 234.98 261.74 289.44 314.98 324.43	$ \begin{array}{r} -1.08 \\ -0.92 \\ -1.83 \\ -1.73 \\ -1.87 \\ -2.02 \end{array} $	$ \begin{array}{r} -1.08 \\ -0.75 \\ -1.86 \\ -1.86 \\ -1.82 \\ -2.01 \\ \end{array} $	

表 3 高纬度冬季模式大气中红外辐射通量密度和加热率 Table 3 IR radiation flux densities and heating rates in the subarctic winter model atmosphere

$P(10^5 \mathrm{Pa})$		0,00005	0,1013	0.3039	0.5065	0.7091	0.9117	1.013	RMS
	a	0.0	15.7	32.6	76.5	127.2	161.1	166.8	0.016
M '	Ъ	0.0	15.3	32.9	75.1	125.6	159.3	165.1	0.0
(₩/m²)	c	0.0	16.2	33.4	76. 6	130.6	159.2	167.2	0.031
	đ	0.0	8.8	26.7	60.8	109.8	153.1	170.6	0.21
	a	203.7	£0 3.1	209.9	226.1	242.9	247.5	245.8	0.012
M^{\dagger}	Ъ	199.3	200.7	207.3	225.3	243.2	248.2	245.8	0.0
(W/m^2)	c	204.3	203.3	210.3	227.8	243.0	247.8	245.8	0,014
	d	216.1	217.9	227.6	238.0	245.8	246.5	245.8	0,068
	a	-1.37	-0.42	-1.15	-1.41	-1.22	-0.61	/	0.10
加热率	Ь	-1.17	-0.46	-1.01	-1.36	-1.20	-0.67	/	0.0
(K/day)	c	-1.45	-0.42	-1.07	-1.61	-0.99	-0.84	/	0.13
	d	-0.60	-0.34	-0.99	-1.72	-1.77	-1.52	/	0.61

表4 中纬度夏季模式大气中红外辐射通量密度和加热率 Table 4 IR radiation flux densities and heating rates in the midlatitude summer model atmosphere

....

$P(10^5 \text{ Pa})$		0,00005	0.1013	0.8039	0.5065	0.7091	0.9117	1.013	RMS
	a	0.0	15.5	60.2	134.6	213.2	301.5	347.0	0.034
M^{\downarrow}	Ь	0.0	16.2	56.6	1 31 .3	210.7	298.6	341.8	0.0
(W/m²)	c	0.0	15.7	58.5	131.3	211.1	297.7	343.9	0.019
	d	0.0	8.0	41.3	103.8	204.1	286.9	332.3	0.25
	a	280,0	284.2	304.6	338.6	37 ₀ .9	409.4	420.8	0,006
M^{\uparrow}	Ъ	283.8	284.5	30 5, 2	339.8	378.2	411.4	420.8	0.0
(W/m^2)	c	279.0	283.1	304.6	337.4	377.2	410.9	420.7	0.003
	d	314.1	319.0	337.9	362.8	392.4	415.7	420.7	0.078
	a	-0.95	-1.01	-1.69	-1.68	-2.33	-2.84	1	0.15
加热率	Ъ	-1.31	-0.82	-1.67	-1.71	-2.28	-2.81	/	0.0
(K/day)	c	-0.97	-0.89	-1.67	-1.66	-2.21	-3.02	/	0.12
	a	-0.26	-0.60	-1.57	-2.94	-2.48	-3.36	/	0.46

的精确结果,可以看到两者符合得相当好。在表 3 和表 4 中,分别给出了在高纬度冬季模式 大气和中纬度夏季模式大气中对整个红外区域(100~2600 cm⁻¹)得到的辐射通量密度和加 热率。

表中 a 行和 b 行的意义同表 2; c 行为用六波段模式[1] 计算的结果; d 行为 Hesen 等⁶³³的模式计算结果。 在表 3 和表 4 的最后一列,给出了相应各量在各个大气层上的均方根相 对误差。 表 3 和表 4 是在大气分成七层时得到的结果。 在表 5 中给出了大气分成 17 层时 的结果。

P		M⁺(W	(m^2)			$M^{\dagger}(\nabla$	7/m²)	1	加热率(K/day)				
(10 ⁵ Pa)	a	Ъ	с	d	a	ъ	с	đ	a	Ъ	С	3	
0.00005	0.0	0.0	0.0	0.0	265.5	265.8	263.2	285.0	_ 3 07	2 04	_2 20	_ 3 64	
0.02525	9.52	9.45	8.60	10.2	263.1	263.6	261.9	284.3	- 5. 51	-0.94	-3.02	0.54	
0.07777	16.9	16.5	16.1	14.4	263.5	264.9	262.1	285.2	-1.13	-0.91	~1.17	-0.0+	
0.1333	22.4	22.1	21.0	17.5	266.0	267.1	265.0	286.5	-0.45	-0.51	-0.31	-0.28	
0.1949	29.4	28. 1	27.7	22.6	269.3	269.7	268.2	288.5	-0.51	-0.47	-0.46	-0.42	
0.2626	40.5	37.3	38.5	33.9	273.9	273.8	273.3	292.8	-0.81	-0.64	-0.71	-0.88	
0.3373	58.8	55.8	56.8	52,0	282.6	282.7	281.8	299.0	-1.08	-1.07	-1.11	-1.34	
0.4192	86.4	85.3	85.0	78.1	295.8	295.3	294.5	308.5	-1.49	-1.74	-1.60	-1.71	
0 5050	117.0	116 7	116.2	110 4	310.5	310 0	308.9	319.9	-1.57	-1.64	-1.65	-2.05	
0 5949	140 3	140 4	148 9	147 7	325.6	324 0	323 6	332 3	-1.61	-1.67	-1.69	-2.34	
0 6848	182 0	180.3	187 0	185 1	941 1	330 0	330.5	345 0	-1.62	-1.58	-1.53	-2.32	
0.7797	102.0	100.0	101.0 909 6	9 10 1	252 0	951 7	950 9	257 5	-1.28	-1.55	-1.42	-2.07	
0,1121	207.2 00r 1	209.1	200.0	219.1	505.0 964 1	301.7	304.3	507.0	-1.75	-1.62	-1.70	-1.94	
0.8030	235.1	230.8	230.0	248.0	304.1	303.7	304.1	308.3	-2.06	-1.50	-1.83	-2.06	
0.9231	261.1	259.4	261.1	273.5	373.1	373.9	373.5	376.3	-2.35	-1.94	-2.09	-2.42	
0.9757	281.5	277.3	280.0	293.0	378.9	379.8	379.4	380.7	-2.57	-2.38	-2.37	-3.01	
1.006	293.2	287.9	290.8	305.1	381.3	3 8 1.9	3 8 1. 7	382.0	-2.27	-2.37	-2.27	-3.10	
1.010	294.0	289.3	291.9	308.5	382.1	382.1	382.1	382.1	2.21	4,01	2.21	0,19	
RMS	0.030	0.0	0.029	0.095	0.003	0.0	0.005	0.05	0.16	0.0	0.15	0.32	

表5 高纬度夏季模式大气中的红外辐射通量密度和加热率 Table 5 IR radiation flux densities and heating rates in the subarctic summer model atmosphere

由上述几个表的结果可以看到,用两波段模式得到的向下和向上辐射通量密度和加热 率,在各个大气层上的计算结果都与精确计算结果相当一致;而且,所有这些量的计算精度 都与六波段模式的计算精度基本相当,而其计算所需的机时却比六波段模式少得多,因此, 二波段辐射模式比六波段模式更具有实用的价值。

在大气环流模式中进行辐射计算时,除了辐射计算方案本身具有的误差外,环流模式所 给出的大气参数(温度、水汽密度、臭氧密度等)的误差,也将给辐射计算带来误差,由于在辐 射计算中需要的是大气层中温度,水汽密度和臭氧密度在垂直路径上积分的等效量,因此, 在环流模式垂直分层较少的情况下,所能得到的这些量在大气层中的平均值实际上就可包 含着较大的误差,这必然给辐射计算带来误差。因而,在应用这种辐射计算方案时,大气的 垂直分层不能太少,另外,还需指出,在大气垂直分层不同时,在式(7)中的系数也将是不同 的,即对不同的大气环流模式,需要分别确定辐射模式中的系数。

参考文献

- [1] 赵高祥 B. Rockel, E. Raschke, 科学通报, 32(1987), 19: 1479.
- [2] Scott N. A. and Chedin A., J. Appl. Met., 20(1981), 801~812.

[3] Hesen A. et al., Quart. J. Roy. Meteor. Soc., 108(1982), 231~252.

AN IMPROVED IR RADIATIVE TRANSFER MODEL FOR GCM'S

ZHAO GAOXIANG WANG HONGQI

(Institute of Atmospheric Physics, Academia Sinica)

ABSTRACT

A new scheme of IR radiative transfer calculation is presented, in which the whole IR spectral region from 100 cm^{-1} to 2600 cm^{-1} is divided into two sub-intervals, one is from 100 cm^{-1} to 980 cm^{-1} , and the other from 980 cm^{-1} to 2600 cm^{-1} . The computing time needed to obtain downward and upward IR radiation flux densities and corresponding IR heating rates in atmosphere is obviously reduced, compared with an original six-subinterval radiation model, while the accuracies are comparable for these two radiation models.