红外研究 Chir.J. Infrared Res.

单片热释电列阵探测器的热分析

王云生

(中国科学院上海技术物理研究所)

摘要——从基本的热分析入手,导出单片热释电列阵的热传递函数,简单地分析了 灵敏元的面积、调制频率和热释电电流的关系;对热释电探测器的热串音进行了分 析并给出一些实验结果。

一、引 言

热释电探测器灵敏元的温度、响应率以及空间分辨率等重要的物理参数都与热释电材 料的热扩散和表面的热辐射有关。尤其在多元线列和面阵中,热扩散和热串音的影响更为 突出,所以,对热释电探测器热传递函数的研究是非常有意义的。

二、热传递函数的分析

图1是用来分析热响应的示意图。多元列阵探测器是在一块晶片上通过真空镀膜和光

刻工艺(必要时采用离子刻蚀工艺)制成的。晶片的厚度为 b, 且在 y 方向是无限延伸的,即晶片的尺寸远 大于灵敏元的尺寸。由于灵敏元 电极 镀层 很薄,所以电极材料的热扩散和热容量 可以忽略。如图1所示,主要考虑 y 方向的热扩散。z 方向虽有热扩散,但 不影响热串音,所以本文不予讨论,只讨论 z 和 y 方向的影响。

本文所用的参数: ΔT_m 为平衡状态下的温度变化 部分, K 为材料的热导率, O 为材料比热, ρ 为材料密 度, $\alpha = \frac{K}{\rho O}$ 为材料的热扩散率。 p 为热释电系数, f 为 时间频率, n 为空间频率, $A = 4a^2$ 为灵敏元面积, ω 为 正弦调制圆频率, $T_s \cos(sy)$ 是景物的有效温度。

假定图1中的入射辐射经正弦调制后,灵敏元的吸收和发射均发生在元件的表面。这 本文1986年11月21日收到。修改稿1987年6月26日收到。 一假设完全符合参考文献[1]的情况。所以,可以给出灵敏元的上表面的边界条件。

$$K \frac{\alpha \Delta T(x, y, t)}{\alpha x} = HT_s \cos(sy) e^{i\omega t} - H_1 \Delta T(x, y, t), \ (x=b)$$
⁽¹⁾

其中 H 为景物(或黑体)的比辐射率, H₁为灵敏面表面单位面积的辐射热导, H₁=4εσT³。 同样, 下表面的边界条件为

$$K \frac{\alpha \Delta T(x, y, t)}{\alpha x} = H_{2} \Delta T(x, y, t), \quad (x=0)$$
⁽²⁾

其中丑。为下表面单位面积的辐射热导。

根据二维热传导方程

$$\frac{\alpha T(x, y, t)}{\alpha t} = K \left(\frac{\alpha^2 T(x, y, t)}{\alpha x^2} + \frac{\alpha^2 T(x, y, t)}{\alpha y^2} \right), \tag{3}$$

利用边界条件(1)、(2),则由方程(3)可得到稳态解T(x, y, t)。因为本文的目的是讨论灵 敏元横向热导对各物理参数的影响,同时为简化方程,使x方向的热扩散影响不出现在热电 流的表达式中,所以先求出x方向的平均温升

$$\Delta T_{sn}(y, t) = \frac{1}{b} \int_{0}^{b} T(x, y, t) dx$$

= $HT_{s}e^{i\omega t} \frac{1}{H_{1}bq} \left\{ \frac{\sin(qb) + H_{2}/Kq[\cos(qb) - 1]}{(Kq/H_{1} + H_{2}/Kq) \cdot \sin(qb) + \left(1 + \frac{H_{2}}{H_{1}}\right) \cdot \cos(qb)} \right\},$ (4)

其中

$$q^{2} = S^{2} + i \frac{\omega}{\alpha}, \qquad (5)$$
$$S = 2\pi n_{0}$$

式 (5) 的含义是考虑了空间分辨率和调制 (或平移或园扫描) 后影响热传导的一个因子。很明显,若不考虑空间分辨率,则S=0,就得到q的最小值 $|q_{\min}| = (\omega/\alpha)^{\frac{1}{2}}$,实际上是热扩散长度的倒数。将式(4) 加以整理,得

$$\Delta T_{m} = \frac{HT_{s}e^{i\omega t}}{b} \cdot \frac{1}{Kq} \left\{ \frac{(Kq)^{2}\sin(qb) + H_{2}Kq[\cos(qb) - 1]}{[(Kq)^{2} + H_{1} \cdot H_{2}]\sin(qb) + Kq(H_{1} + H_{2}) \cdot \cos(qb)} \right\}_{o}$$
(6)

式(6)中, $\frac{1}{Kq}$ 项是横向热传导对 ΔT_m 的贡献。 大括号项是灵敏元上、下表面的热辐射对 ΔT_m 的贡献。考虑到灵敏元采用真空封装,再加上大括号项的辐射影响很小,可以忽略,于 是式(6)简化为

$$\Delta T_m = \frac{HT_s e^{t\omega t}}{b} \cdot \frac{1}{Kq} \circ$$
(7)

则单位面积上热释电电荷为

$$Q_{s}(yt) = p \varDelta T_{m}(yt)$$

將式(5)和 $K = \rho C \alpha$ 代入上式,得

$$Q_{s}(yt) = HT_{s}\rho(bC\rho\alpha)^{-1} \frac{1}{S^{2} + i\omega/\alpha} \cdot e^{i\omega t}$$
$$= HT_{s}\rho(\omega\rho C\alpha)^{-1} \left[1 + \left(\frac{\alpha S^{2}}{\omega}\right)^{2}\right]^{-\frac{1}{2}} \cdot e^{i(\omega t - \delta)}, \tag{8}$$

其中 $\phi = \cot^{-1}\left(\frac{\alpha s^2}{\omega}\right)$ 。由式(8)可知,当 $t = \frac{\phi}{\omega}$ 时, $Q_s(yt)$ 有最大值

• 32 •

$$Q_{s}(yt) = HT_{s}p(\omega\rho Ob)^{-1} \left[1 + \left(\frac{\alpha S^{2}}{\omega}\right)^{2}\right]^{-\frac{1}{2}}$$
(9)

根据参考文献[8]、[4]的定义,热传递函数

$$D(sf) = Q_s(yt)/Q_{s \to 0}(yt)$$

힚

$$D(sf) = \left[1 + \left(\frac{\alpha S^2}{\omega}\right)^2\right]^{-\frac{1}{2}}$$
(10)

以上是在调制点源的情况下导出的、正弦调制情况下的 热传 递函数 D(Sf)。分析式 (10)可知: (1) 当要求空间分辨率 S 增大时,必须增大 ω,才能保证 D(Sf)不变; (2) 当 增 大ω时,若 S 不变,则相当于 α/ω 减小,即热扩散长度减小,入射能量的效率提高,所以D(Sf) 增大; (3) 当 S、ω 不变时,减小材料的热扩散率 α,同样可以提高 D(Sf)。

图 2 热传递函数D(Sf)和无重纲量 $n\sqrt{\alpha/\omega}$ 的关系曲线

Fig. 2 Heat transfer function D(Sf) vs non-dimensional parameter $n\sqrt{a/\omega}$

图 2 是三种材料使用不同调制频率时的热传递函数 D(sf)的曲线,图中表明ω增大则 D(sf)增大,图 2 还表明在热传递函数相同时,不同的材料的空间分辨率可相差 2~8 倍。这 就是说,要得到同样的热响应电流,在低分辨率时可用 LiTaO₃,中等分辨率时可用 TGS;而 高分辨率时则要求用 PVF₂。

三、灵敏元面积、调制频率和热释电电流的关系

在多元列阵的研制过程中,对元件面积的选择是一个很重要的问题,本文从电流响应率的关系式入手进行讨论。

在热传递函数的分析中,采用了调制点源这一模型,而对于多元列阵探测器,电极面积 上的全部电荷是同时读出的,所以应先计算元件面积上总的电荷量。将式(8)写成如下的形 式:

$$Q_{\mathbf{e}}(yt) = HT_{\mathbf{e}}e^{-i\mathbf{e}y}(\omega\rho Cb)^{-1} \left[1 + \left(\frac{\alpha s^2}{\omega}\right)^2\right]^{-\frac{1}{2}}e^{i(\omega t - \phi)}, \tag{11}$$

对面积 A=4a² 积分,即可得到每一灵敏元的全部电荷

• 33 •

 $Q = \int_0^{2a} \int_{-a}^a Q_s(yt) dz dy$

$$= HT_{s} (\omega \rho Cb)^{-1} 4a^{2} \left[1 + \left(\frac{\alpha S^{2}}{\omega}\right)^{2} \right]^{-\frac{1}{2}} \frac{\sin(Sa)}{S_{a}} e^{i(\omega t - s)}$$
(12)

由此可直接写出热释电电流表达式 $i_p = \omega p \Delta T_m A$,将其代入式(12),得

$$i_{g} = HT_{s}(\rho Cb)^{-1}A \left[1 + \left(\frac{\alpha S^{2}}{\omega}\right)^{2}\right]^{-\frac{1}{2}} \frac{\sin(Sa)}{Sa} e^{i(\omega t - \phi)}$$

取 in 的幅值,并将其归一化,则有

$$i_{p}^{*} = \left[1 + \left(\frac{\alpha S^{2}}{\omega}\right)^{2}\right]^{-\frac{1}{2}} \frac{\sin(Sa)}{Sa}, \qquad (13)$$

 $i_{p}^{*} = \frac{i_{p}\rho Cb}{HT_{s}A}$ 就是归一化的电流响应率。从式(13)可知,当 $S = \frac{\pi}{2a}$ 时, i_{p}^{*} 有最大值

$$i_{pmax}^{*} = \left[1 + \left(\frac{\sqrt{\frac{\pi}{2}}}{a\sqrt{\frac{\omega}{\alpha}}}\right)^{4}\right]_{\circ}^{-\frac{1}{2}}$$
(14)

图 3 i_{pmax}^* 和无量纲量 $a\sqrt{\omega/\alpha}$ 的关系曲线 Fig. 3 i_{pmax}^* vs non-dimensional parameter $a\sqrt{\omega/\alpha}$,

材料,α值不同,仍可用此曲线进行估算,为设计多元探测器提供了方便。

四、热串音的分析

热串音是指调制点源在图1灵敏元1的中心时,虽然灵敏元2和3没有直接接收入射辐射,但由于材料热扩散的影响,2和3亦会产生热释电电流,引起热串音,用 i_{sy}/i_g或 V_{sy}/V_s 采表示。参考文献[2]指出,如果表面的过量温度为 Q₀=Q_mcosωt,则在表面以下距 离为 x 处的过量温度为

 $Q_{\boldsymbol{x}} = Q_{m} \exp\left[-\left(\omega C'/2K\right)^{\frac{1}{2}} \boldsymbol{x}\right] \cdot \cos\left[\omega t - \left(\frac{\omega C'}{2K}\right)^{\frac{1}{2}} \boldsymbol{x}\right],$

因此,当表面以下深度 $\delta_T = \left(\frac{2K}{\omega C'}\right)^{\frac{1}{2}}$ 时, $Q_a = 1/e_o$

根据分析可知: 过量温度的热衰减指数为 $e^{-\left(\frac{\omega C'}{2K}\right)^{\frac{1}{2}}}$ 其中 $K = C'\alpha$, 所以有 $e^{-\left(\frac{\omega}{2\alpha}\right)^{\frac{1}{2}}}$ 。实 • 34 •

际上参考文献[2]中的 Qm 就是本文中的 dTm。对于同一片晶片,我们认为这一温度减辐波 是各向同性的。分析式(5)的含义可知,本文的热衰减系数可写成 e^{-a}。参照上面的推导,在 距光照元件中心为 y 处的平均温升为

$$\Delta T_{my} = \Delta T_m e^{-qy}, \qquad (14)$$

根据式(13)可以直接写出图1中元件2的归一化的串音电流

$$i_{p(a+\Delta)}^{*} = \left[1 + \left(\frac{\alpha S^{2}}{\omega}\right)^{2}\right]^{-\frac{1}{2}} \frac{\sin(Sa)}{Sa} e^{-q(a+\Delta)}$$
(15)

根据热串音的定义,利用式(13)和(15),可直接写出热串音表达式。

$$F_{y} = i_{p(a+\Delta)}^{*} / i_{p}^{*} = e^{-q(a+\Delta)}, \qquad (16)$$

因为 $q^2 = S^2 + i \frac{\omega}{\alpha}$, 所以

$$F_{y} = e^{-\sqrt{S^{3} + i\frac{\omega}{\alpha}} (a+\Delta)} = e^{-\sqrt{1 + i\frac{\omega}{S^{3}\alpha}} S(a+\Delta)}$$
(17)

由式(17)可得出以下结论: (1) 当 $\frac{\omega}{s^2\alpha} \leq 1$ 时,可利用 $\sqrt{1+x}$ 的展开形式将式(17) 化简,并取其实数部分:

$$F_{y} = e^{-\left[1 + \frac{1}{8} \left(\frac{\omega}{\delta^{s}a}\right)^{s}\right] S(a+4)} \qquad ; \qquad (18)$$

(2) 当
$$\frac{\omega}{S^2 \alpha} = 1$$
 时,则有 $\omega = S^2 \alpha$,所以
 $F_v = e^{-\sqrt{2} \cdot S \cdot (\omega + d)};$ (19)
(3) 当 $\frac{\omega}{S^2 \alpha} \ge 1$ 时,可将 $\sqrt{\frac{\omega}{S^2 \alpha}} i \cdot \sqrt{1 + \left(-\frac{S^2 \alpha}{\omega}\right)} i$ 按 $\sqrt{1 + x}$ 展开,只取其实部,则有:

式(18)表明,在低频情况下热串音 F_y 基本上取决于 S 和灵敏元之间 的间隔($a+\Delta$),与 ω 的关系不明显, 在图 4 和图 5 的曲线上,"井"号以 上的部分基本上是平行于 ω 轴的直 线,我们将"井"处的频率称为转折 频率,由 $\omega=S^2\alpha$ 决定。图 6 是空间 频率 $S(S=2\pi n)$ 与转折频 ω^* 的 关系,一旦 S确定后,则转折频率 ω^* 就确定了。

从图 4 中曲线 4 和图 5 中曲线 1、2 可知,只要 S 和 Δ 相同,不管那种材料,在低频下热串音的起始点都是一样的, $F_y = e^{-S(a+\Delta)}$ 。当调制频率 ω 不断升高时,其 F_y 按式(21)

的形式衰减, S 对 F_{μ} 的贡献随 ω 的增加而迅速减小,最终将按 $e^{-\sqrt{\frac{\omega}{2\alpha}}}$ 的形式衰减。这一结果与参考文献 [2] 中的式 (10) 相同, 图 4 中曲线 1 和 5 的结果也证明了这一点。

• 35 •

a = 0.26 mm²/s)、PVF₂(α=0.15 mm²/s)三种材料的热串音 Fig. 5 Comparison of heat crosstalk of LiTaO₃、TGS and PVF₂. 图 6 转折频率 ω^{*} 与空间频率 S=2πn 的关系 Fig. 6 Turning frequency ω[•] vs space frequency S=2πn

图 4 和图 5 还表明, 在使用热释电多元列阵探测器时, 其使用频率一定要大于转折频 率,根据ω=S³α关系式可确定所使用的空间频率 S。图 5 中虚线表示同一频率下(10 Hz), 三种材料的热串音。若要求串音在 5% 时,三种材料的调制频率分别为 14.6、25.5、127 Hz, 这一结果和分析图 2 时的结论一致。

五、结 论

在使用单片晶片、采用镀膜或光刻制作多元器件时,必须考虑热扩散其他参数的影响, 而使用者亦应了解热参数与 S、ω、D(S)和 F,之间的关系。通过以上讨论,得到以下结论:

1. 一旦所要求的空间频率 $S = 2\pi n (n = 3 \text{ gg}/\text{mm})$ 确定后,即可由式(29)确定调制频率的转折频率 ω^* ,而使用频率必须大于 ω^* 。在这种情况下,只有提高 ω 和采用 α 低的材料,才能提高热传递函数 D(S)。

 研制多元探测器时,不能选择太小的元件面积和使用频率ω,否则电流响应率就要 降低。最好选在图3曲线的90%左右,既保证了一定的电流响应率,使用频率和元件面积 又不至于太小,从工艺上考虑是有利的。

8. 由于热释电探测器的电压响应率 R_o和 1/f 成正比,要热串音小,则必然导致ω的提高,而使 R_o降低。为解决这一矛盾,选取热扩散率α小的材料制作器件较为有利。 图 5 中虚线所示频率与 F_y的关系,正说明这一问题。

通过上述热分析的讨论可看出,即使选用α最小的 PVF₂ 材料,其热串音在低频下还是 相当可观的,因此采用离子刻蚀工艺制作多元探测器是十分必要的。图7是采用离子束刻 蚀制作的 8 元 TGS 探测器热串音情况。

致谢——在成文过程中曾得到陈祖培同志的有益帮助,在此谨致谢意。

• 36 •

参考文献

[1] Logan R. M. and Mclean T. P., Infrared physics, 13(1973), 1:15~24.

[2] (美)R. K. 威拉德森、A. C. 比尔,红外探测器,国防工业出版社,1973, p. 252~256.

[3] Stokwski S. E., Appl. opt., 51 (1976), 7:1767~1774.

[4] Holeman B. R. and Wreafhall W. M., J. phys., D4(1971), 1898.

HEAT ANALYSIS FOR SINGLE-CHIP PYROELECTRIC DETECTOR ARRAY

WANG YUNSHENG

(Shanghai Institute of Technical Physics, Academia Sinica)

ABSTRACT

The heat transfer function is derived on the basis of the heat analysis. The relations between pyroelectric current and sensitive area as well as modulation frequency are analysed. A brief analysis of heat crosstalk for pyroelectric detectors is presented and. some experimental results are given.