红外研究 Chin. J. Infrared Res.

光导探测器芯片中的温度分布

许生龙 (昆明物理研究所)

摘要——研究了辐射热与焦尔热并存时芯片中的温度分布,结果表明:只有作者提出的"非波动成份"才对致冷有贡献,功率为 $Q=4ab\lambda\sqrt{\mathcal{R}^2+C_{01}^2}\left\{1-\frac{k^2}{4}-\frac{15}{64}k^4+\cdots\right\}$,辐射热与焦尔热之间存在相互作用, 其度量因子是 $k=\frac{\mathscr{R}C_{01}}{\mathscr{R}^2+C_{01}^2}$ 。还分析了辐射热的频率响应特性。

一、热源函数

如何正确地分析芯片内部的热过程,一直是探测器研制工艺中所关注的问题之一。我

Fig. 1 Distribution of electric power in the core piece.

本文 1986 年 11 月 25 日收到。修改稿 1987 年 3 月 9 日收到。

ĩ)

们看到的多数文献都假定焦尔热产生于芯片表层,这种看法有其合理之处,但不全面。因为 在探测器工作时,整个芯片内部处处都是热源,但在接近光敏面的位置,产生的焦尔热要多 一些(参看图 1)。为了弄清在与外界有热交换时芯片中的温度分布,应该首先研究芯片内 部的电功率分布。参考文献[2]已作了些工作,但侧重于研究"功率电阻",故此有必要重新 研究 ω(x, y, z)的分布特征。我们已经求得

$$\omega(x, y, z) = \frac{2\sigma V_0^2}{a^2 c^2} \sum_{m=1}^{\infty} \sum_{n=0}^{\infty} D_m D_n \{\cos(a_m - \alpha_n)x \cdot \operatorname{ch}(a_m + \alpha_n)(h - z) + \cos(\alpha_m + \alpha_n)x \cdot \operatorname{ch}(a_m - \alpha_n)(h - z)\},$$
(1)

其中

$$\begin{cases} \alpha_n = \frac{\pi}{a} \left(n + \frac{1}{2} \right), \\ D_n = \frac{\sin \alpha_n c}{\alpha_n c \ln(\alpha_n h)}, \end{cases} \qquad n = 0, 1, 2, \cdots$$

$$(2)$$

由于 $\omega(x, y, z)$ 是位置函数,因此在不同点之间必然有热交换,故而应考查 $\omega(x, y, z)$ 的梯度:

$$\begin{cases} \frac{\partial \omega}{\partial x} = -\frac{2\sigma V_0^2}{a^2 C^2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} D_m D_n \{ (\alpha_m - \alpha_n) \sin(\alpha_m - \alpha_n) x \cdot \operatorname{ch}(\alpha_m + \alpha_n) (h - z) \} \\ + (\alpha_m + \alpha_n) \sin(\alpha_m + \alpha_n) x \cdot \operatorname{ch}(\alpha_m - \alpha_n) (h - z) \} \\ \frac{\partial \omega}{\partial y} = 0, \end{cases}$$

$$\begin{cases} \frac{\partial \omega}{\partial y} = 0, \\ \frac{\partial \omega}{\partial z} = -\frac{2\sigma V_0^2}{a^2 c^2} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} D_m D_n \{ (\alpha_m + \alpha_n) \cos(\alpha_m - \alpha_n) x \cdot \operatorname{sh}(\alpha_m + \alpha_n) (h - z) \} \\ + (\alpha_m - \alpha_n) \cos(\alpha_m + \alpha_n) x \cdot \operatorname{sh}(\alpha_m - \alpha_n) (h - z) \}_0 \end{cases}$$

$$(3)$$

显然,在x=0或者是侧面 $x=\pm a$ 时,有

$$\begin{cases} \frac{\partial \omega}{\partial x} = 0, \\ \frac{\partial \omega}{\partial z} \neq 0_{0} \end{cases}$$
(4)

而在底面 s=h时,有

$$\begin{cases} \frac{\partial \omega}{\partial x} \neq 0, \\ \frac{\partial \omega}{\partial z} = 0_{\circ} \end{cases}$$
(5)

式(4)、(5)表明:如果沿芯片表面的法线方向,则愈接近表面,ω的差异愈小,如果沿切线方向,则无此结果。

引用"热流"概念 q=-λ ∇T(λ 为热导系数),注意到文献[2]中的关系式

$$\frac{dT}{dt} = \frac{\omega}{\rho C_v},\tag{6}$$

则在侧面 a= ±a 时,有

$$\begin{cases} \frac{dq_x}{dt} = 0 \quad (法向), \\ \frac{dq_s}{dt} \neq 0 \quad (切向), \end{cases}$$
(7)

在底面 2=h 上也同样有

• 24 •

$$\frac{dq_{s}}{dt} = 0$$
 (法向),
$$\frac{dq_{s}}{dt} \neq 0$$
 (切向)。 (8)

式(7)、(8)表明:由芯片表面溢出的热流不随时间变化,呈现稳态特征。

二、热传导方程

设想一个封闭曲面,考查其中所发生的热运动过程,就可得到具有热源时的方程是

$$\frac{1}{u^2} \frac{\partial G}{\partial t} = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial y^2} + \frac{\partial^2 G}{\partial z^2} + \frac{1}{\lambda} \omega(x, y, z), \qquad (9)$$

显然式(6)是它的特例。 在式(9)中 $G = T - T_0$ 是温度差, T_0 为低温区的温度, 并且 $u^2 = \frac{\lambda}{Q}$ 。将式(9)用于文献[1]的模式,则可提出下面的边值条件。

1. 底面条件

由于芯片的底面
$$z=h$$
 直接接触温度为 T_0 的低温区,故对底面可提恒温条件
 $G|_{s=h}=0(或 T|_{s=h}=T_0)$ 。 (10)

2. 侧面条件

由于芯片密封在高度真空的环境中,残余气体所传导的热量完全可以忽略,故对侧面可 提绝热条件

$$\begin{cases} \frac{\partial G}{\partial x} \Big|_{x=\pm 0} = 0; \\ \frac{\partial G}{\partial y} \Big|_{y=\pm 0} = 0_{0} \end{cases}$$
(11)

8. 表面条件

由于任何辐射信号 W(t)皆可作傅里叶分解:

$$W(t) = \int_{-\infty}^{+\infty} W_0(\omega) e^{j\omega t} d\omega, \qquad (12)$$

$$W_0(-\omega) = W_0^*(\omega)_0 \tag{13}$$

也就是说 W(t)可由一系列"单色波"——W₀(ω)e^{tωt} 来合成。因此研究 W₀(ω)e^{tωt} 具有典型 性。式(13)表明 W(t)是实函数。 假定从背景辐射强度为 P₀ 的外界,向探测器投射一束频 率为 ω、功率为 W₀ 的单色光信号,由于电极与光敏面对入射光的吸收系数 η'、η'、η、η 不一 样,并같意到芯片密封在高真空中,故对表面可提:

$$-\lambda \frac{\partial G}{\partial z}\Big|_{z=0} = \begin{cases} \eta_0 P_0 + \eta W_0 e^{j\omega t}, & (|x| \leq c) \\ \eta'_0 P_0 + \eta' W_0 e^{j\omega t}, & (c \leq |x| \leq a) \end{cases}$$
(14)

对入射光信号 Woeiwt 取绝对值,则得信号功率 | Wo |, 而 eiwt则是谐振因子。

注意到以上各式都不含 y,式(11)中的第二式则天然成立。因此式(9)可简化为

$$\frac{1}{u^2} \frac{\partial G}{\partial t} = \frac{\partial^2 G}{\partial x^2} + \frac{\partial^2 G}{\partial z^2} + \frac{1}{\lambda} \omega(x, z), \qquad (15)$$

将G分解为平衡态S(x, z)与动态L(x, z, t)两部份

G = L(x, z, t) + S(x, z), (16)

• 25 •

则平衡态S(x, z)满足方程

$$\frac{\partial^2 S}{\partial x^2} + \frac{\partial^2 S}{\partial z^2} + \frac{1}{\lambda} \omega(x, z) = 0$$

$$S|_{z=\lambda} = 0, \quad \frac{\partial S}{\partial x}|_{x=\pm a} = 0, \quad (17)$$

及边值条件

$$-\lambda \frac{\partial \dot{S}}{\partial z}\Big|_{z=0} = \begin{cases} \eta_0 P_0 & (|x| \leq c), \\ \eta'_0 P_0 & (c \leq |x| \leq a)_0 \end{cases}$$
(18)

而动态 L(x, z, t)满足的方程是

$$\frac{1}{u^2} \frac{\partial L}{\partial t} = \frac{\partial^2 L}{\partial x^2} + \frac{\partial^2 L}{\partial z^2},$$
(19)

边值条件则是

$$L|_{z=0} = 0, \quad \frac{\partial L}{\partial x}\Big|_{x=\pm a} = 0,$$

$$-\lambda \frac{\partial L}{\partial z}\Big|_{z=\hbar} = \begin{cases} \eta W_0 e^{j\omega t}, \quad (|x| \le c) \\ \eta' W_0 e^{j\omega t}, \quad (c \le |x| \le a) \end{cases}$$
(20)

三、平衡态的解

在式(17)中,由于 $\omega(x, z)$ 是x的偶函数,因此在S(x, z)中只应含 $X(x) = \cos \beta x$ 因子。满足侧面条件的X(x)是

$$\boldsymbol{X}_{\boldsymbol{k}}(\boldsymbol{x}) = \cos \beta_{\boldsymbol{k}} \boldsymbol{x}, \qquad (21)$$

$$\beta_k = \frac{k\pi}{a}$$
, $(k=0, 1, 2, \dots)$

令

其中

$$\frac{1}{\lambda}\omega(x, z) = \sum_{k=0}^{\infty} F_k(z)\cos\beta_k x, \qquad (22)$$

可得

$$F_{\mathbf{k}}(z) = \frac{\sigma V_0^2}{\lambda a^2 c^2} \sum_{\substack{n=0\\ \mathbf{4}=\pm 1}}^{\infty} D_n D_{n+i\mathbf{k}} \operatorname{ch} \frac{\sigma \tau}{a} (2n+i\mathbf{k}+1) (h-z)_{\mathbf{0}}$$
(23)

令

$$S(x, z) = \sum_{k=0}^{\infty} S_k(z) X_k(x), \qquad (24)$$

则式(17)变为

$$\frac{d^{2}S_{k}}{dz^{2}} - \beta_{k}^{2}S_{k} + F_{k}(z) = 0_{o} \qquad (k = 0, 1, 2, \cdots)$$
(25)

1. 当 k=0 时

$$\frac{d^2 S_0}{dz^2} = -F_0(z) = -\frac{2\sigma V_0^2}{\lambda a^2 c_2} \sum_{n=0}^{\infty} D_n^2 \operatorname{ch}[2\alpha_n(h-z)], \qquad (26)$$

其解为

$$S_{0}(z) = C_{01}(h-z) + \frac{\sigma V_{0}^{2}}{2\lambda a^{2}c^{2}} \sum_{n=0}^{\infty} \frac{D_{n}^{2}}{\alpha_{n}^{2}} \{1 - \operatorname{ch}[2\alpha_{n}(h-z)]\}, \qquad (27)$$

$$\underbrace{\underbrace{\mathsf{g}}_{\mathsf{H}} \mathsf{g}_{\mathsf{H}}}_{\mathsf{H}} \underbrace{\mathsf{g}}_{\mathsf{H}} \mathsf{g}_{\mathsf{H}} \mathsf{g}_{\mathsf{H}}$$

• 26 •

其中

$$C_{01} = \frac{2\sigma V_0^2}{\lambda a^2 C^2} \sum_{n=0}^{\infty} -\frac{\sin^2(\alpha_n c)}{\alpha_n^3} \tan h(\alpha_n h) + \frac{P_0}{\lambda} \Big[\eta_0' + \frac{c}{a} (\eta_0 - \eta_0') \Big]_0$$
(28)

显然, Vo和 Po对 Ooi都有贡献,并且 Vo的贡献就是文献[2]中求得的焦尔热的总功率,下 文特证明 Ooi 可描述穿越底面的热流。由此可见,由不同的途径得到同一结论。

2. 当 k ≠ 0 时

通过较为复杂的演算,可求得

$$S_{k}(z) = C_{k1} \mathrm{sh} \beta_{k}(h-z) - \frac{\sigma V_{0}^{2}}{2\lambda a^{2} C^{2}} \sum_{\substack{n=0\\i=\pm 1}}^{\infty} \frac{D_{n} \cdot D_{n+ik}}{\alpha_{n} \cdot \alpha_{n+ik}} \mathrm{sh} \alpha_{n}(h-z) \cdot \mathrm{sh} \alpha_{n+ik}(h-z), \quad (29)$$

其中

$$C_{k1} = \frac{\sigma V_0^2}{2\lambda a^2 c^2} \sum_{\substack{n=0\\i=\pm 1}}^{\infty} \frac{D_n \cdot D_{n+ik}}{\alpha_n \cdot \alpha_{n+ik}} \cdot \frac{\operatorname{sh}(\alpha_n h) \cdot \operatorname{sh}(\alpha_{n+ik} h)}{\beta_k \operatorname{ch}(\beta_k h)} \times \left\{ \frac{\alpha_n}{\tanh(\alpha_n h)} + \frac{\alpha_{n+ik}}{\tanh(\alpha_{n+ik} h)} \right\} + \frac{2 P_0(\eta_0 - \eta_0') \sin \beta_k c}{\alpha_0 \beta_k^2 \operatorname{ch}(\beta_k h)}$$
(30)

由此可见,有热源存在时的平衡态 S(x, z)是一个分布复杂的状态。它由"非波动成份"—— $S_0(z)$ 和一系列"波动成份"—— $S_k(z)\cos\beta_kx$ 组成。而 $S_0(z)$ 又分为"线性分布"与"非线性分 布"两大部分,而以往的报道大多只研究了线性分布。 另外外加电压 V_0 与背景辐射 P_0 对 S(x, z)皆有贡献。若 $V_0 \rightarrow 0$, S(x, z)并不消失, S(x, z)的分布类似图 1.

四、动态解

由于式(19)是齐次方程,为消除谐振因子。"",令

$$L(x, z, t) = \sum_{k=0}^{\infty} L_k(z) \cdot X_k(x) e^{j\omega t}, \qquad (31)$$

得

令

$$\frac{d^2 L_k}{dz^2} - \beta_k^2 L_k = j \frac{\omega}{u^2} L_{ko} \quad (k = 0, 1, 2, \cdots)$$
(32)

$$\mu_{k} = \sqrt{\left(\frac{k\pi}{a}\right)^{2} + j\frac{\omega}{u^{2}}}, \qquad (33)$$

解得

$$\boldsymbol{L}_{\boldsymbol{k}}(\boldsymbol{z}) = \boldsymbol{\bar{C}}_{\boldsymbol{k}} \operatorname{sh} \boldsymbol{\mu}_{\boldsymbol{k}}(\boldsymbol{h} - \boldsymbol{z})_{\boldsymbol{o}}$$
(34)

其中

$$\begin{cases} \overline{C}_{0} = \frac{W_{0}}{\lambda \mu_{0} \operatorname{ch}(\mu_{0}h)} \left[\eta' + \frac{c}{a} (\eta - \eta') \right], \\ \overline{C}_{k} = \frac{2W_{0}}{k\pi \lambda \mu_{k} \operatorname{ch}(\mu_{k}h)} (\eta - \eta') \sin \beta_{k} c_{0} \end{cases}$$
(35)

显然,在动态分布 L(x, z, t)中,不可能存在"线性分布"。由于 $\vec{C}_k \propto W_0$,故知 L(x, z, t)与入射光的辐射功率 W_0 成正比,如果有 $\eta' = \eta$,则 $\vec{C}_1, \vec{C}_2, \dots$ 各项消失, L(x, z, t)蜕化为 $L(x, z, t) = \vec{C}_0 \operatorname{sh} \mu_0 (h-z) e^{f \omega t}$. (36)

也就是说,由于电极与光敏面对入射信号的吸收不一样,从而在 L(x, z, t)中产生"波动成份"——L_k(z)cos β_kaze^{iωt}。下文将证明"波动成份"对致冷的总功率并无贡献,它的作用是重新分配芯片内部的热能。

五、致冷功率

由前面的计算得到芯片中温度分布是

$$T = T_0 + \sum_{k=0}^{\infty} S_k(z) X_k(x) + \sum_{k=0}^{\infty} L_k(z) X_k(x) e^{j\omega t}$$

$$\underline{S_k(z) X_k(x)} = \sum_{k=0}^{\infty} \frac{1}{2\pi i k (z)} \sum_{k=0$$

如果考查热流,可得

$$\begin{cases} q_{x} = -\lambda \frac{\partial T}{\partial x} = \lambda \sum_{k=0}^{\infty} \left[L_{k}(z) e^{j\omega t} + S_{k}(z) \right] \beta_{k} \sin \beta_{k} x, \\ q_{y} = -\lambda \frac{\partial T}{\partial y} = 0, \\ q_{z} = -\lambda \frac{\partial T}{\partial z} = -\lambda \sum_{k=0}^{\infty} \left[\frac{d L_{k}}{dz} e^{j\omega t} + \frac{d S_{k}}{dz} \right] \cos \beta_{k} x_{0} \end{cases}$$
(38)

对于侧面,显然有 $g_a=0$,计算穿越底面的热流,就是所需致冷的功率 Q_a

$$Q = \int_{-b}^{b} dy \int_{-a}^{a} q_{s} \bigg|_{s=h} dx = -4ab\lambda \bigg[\frac{dL_{0}}{dz} e^{j\omega t} + \frac{dS_{0}}{dz} \bigg]_{s=h}, \qquad (39)$$

即表明只有"非波动成份"才对致冷功率 Q 有贡献,进而求得 $Q = 4ab\lambda [\mu_0 \bar{C}_{00} i^{i\omega t} + C_{01}]_{00}$ 。

$$\mu_0 \bar{C}_0 = \mathscr{R} \, \theta^{i\phi}, \tag{41}$$

(40)

可得

Ŷ

$$Q| = 4 ab\lambda \sqrt{\mathscr{R}^2 + C_{01}^2 + 2 \mathscr{R} C_{01} \cos(\omega t + \phi)}_{o}$$

$$\tag{42}$$

这就是说,对 Q 有贡献的除了纯粹的信号辐射 W_0 与纯粹的焦尔热及背景辐射 P_0 之外,还 有它们的相互作用项 2 $\mathscr{R}C_{01}$ cos($\omega t + \phi$)。有趣的是,相互作用项具有辐射信号的周期,而 且相位 ϕ 也是 ω 的函数。 2 $\mathscr{R}C_{01}$ cos($\omega t + \phi$)的出现意味着在特定条件下,热运动也会产生 类似于"波动"过程的"叠加"效应,这一现象至今还未见过报道。

由于|Q|值与热导率 \ 无关,故只需要维持冷源的温度不变,制冷的功率就与 \ 无关。Q 是时间函数,求其平均值得

$$\langle |Q| \rangle = 4 \, a b \lambda \sqrt{\mathscr{R}^2 + C_{01}^2} \left\{ 1 - \frac{1}{4} \, k^2 - \frac{15}{64} \, k^4 + \dots \right\}, \tag{43}$$

其中 k= 𝔅 C₀₁/(𝔅²+C_n)就是相互作用项的贡献。因为 0≤k≤0.5, 故知它在式(43)中仅 起到修正作用。这说明相互作用项一直未曾引起注意的原因是其贡献不大。

另外,式(42)表明,致冷功率 Q 是 % 与 Con 的"矢量和",这与以往的报道不同。

六、频 响 特 性

虽然平衡态 S(x, z)与ω无关, 但是 L(x, y, t)却与ω关系密切, 并且决定着滤波后 的 电信号, 故而有必要分析动态的频率响应特性。在不考虑 η-ω关系的前提下, 剔除 ℬ 中不 变的因子, 令

• 28 •

$$\boldsymbol{\xi}(\boldsymbol{\omega}) = \frac{\mathscr{R}}{W_0 \left[\eta' + \frac{c}{a} (\eta - \eta') \right]} = \left| \frac{1}{ch(\mu_0 h)} \right| = \sqrt{\frac{2}{ch\sqrt{\frac{\omega}{\omega_0}} + \cos\sqrt{\frac{\omega}{\omega_0}}}}, \quad (44)$$

其中 $\omega_0 = \lambda/\rho C_v h^2$ 是由芯片的厚度 h 及性能参数所决定的特征频率。在 $\omega < \omega_0$ 时, 有

$$\xi(\omega) = \frac{1}{\sqrt{1 + \frac{1}{4!} \left(\frac{\omega}{\omega_0}\right)^2 + \frac{1}{8!} \left(\frac{\omega}{\omega_0}\right)^4 + \cdots}},$$
(45)

在 ω≫ω₀ 时有

$$\xi(\omega) \doteq 2e^{-\frac{1}{2}\sqrt{\frac{\omega}{\omega_{\bullet}}}},$$
(46)

由此可见: $\xi(\omega)$ 在低频变化不大,在高频却衰减较快。 其衰减因子 $h/2\sqrt{\rho C_v/\lambda}$ 与厚 度 h 有关。 $\xi(\omega)$ 曲线见图 2,在设计芯片的厚度时需要考虑探测器的工作波段。

Fig. 2 Curve of dynamic frequency response.

致谢----感谢邵式平和朱惜辰同志的帮助。

参考文献

[1] 许生龙、冯文清,红外研究,5 (1986), 1: 69~73.

[2] 许生龙,红外研究,5(1986),6:465~468.

TEMPERATURE DISTRIBUTION IN THE CORE PIECE OF PHOTOCONDUCTIVE DETECTOR

XU SHENGLONG (Kumming Institute of Physics)

ABSTRACT

The temperature distribution in the core piece is calculated when the Joule heat and radiation heat exist simultaneously. The results show that there is a non-wave component which contributes to a refrigeratory power $Q = 4ab\lambda \sqrt{\mathcal{R}^2 + G_{01}^2} \left\{ 1 - \frac{1}{4}k^2 - \frac{15}{64}k^4 + \cdots \right\}$; there exists an interaction between Joule heat and radiation heat which can be measured by a factor $k = \frac{\mathcal{R}O_{01}}{\mathcal{R}^2 + G_{01}^2}$. The response characteristic of radiation heat as a function of frequency is analysed.

80 •