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A low-complexity method for concealed object detection in
active millimeter-wave images
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Abstract: Active millimeter wave imaging ( AMWI) is an efficient way to detect dangerous objects concealed un—
der clothes. However because the images acquired by AMWI are often obscure and some of concealed objects are
small in size the automatic detection and localization of the objects remain as a challenging problem. Yao ' first
employed convolutional neural networks( CNNs) and used a dense sliding window method to detect concealed ob—
jects. In this paper the author presents two improvements over Yaos work: 1) Using contextual information to
suppress interference and improve detection probability; 2) Using a two-step search method instead of exhaustive
search to reduce the computational complexity. To reduce the computational complexity the author first uses a
CNN in vertical direction to filter the interference and obtain the vertical position of the concealed object then uses
another CNN to determine the horizontal position of the concealed object. To make use of big window containing
contextual information the author uses IoG ( intersection-over-ground-iruth) instead of IoU ( Intersection-over-U-—
nion) to define positive and negative samples in training and testing process. Experimental results show that the
proposed method will make the length of computational time reduced to about 30% of that of the exhaustive search

while achieving better detection performance.
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Introduction

It is well known that millimeter electromagnetic
wave Is able to penetrate clothing and does not cause
harm to human body with low power. Recently millime-
ter-wave imaging radar has been widely used in human
security check areas > . However due to the low signal
to noise ratio ( SNR) and low contrast of the AMWI ima—
ges as shown in Fig. 1 the detection and localization of
concealed objects in those images still remain as a chal-
lenging problem.

Fig.1 AMWI images of human body with con-
cealed objects located in the mentioned box

1 AMWI

Object detection is a fundamental and challenging
problem in the field of computer vision where great pro—
gresses have been made in the field of object detection by
combining machine learning with searching techniques
e.g. the works in Ref. 4 and Ref. 5 . In Ref. 6-
8  new detection methods are proposed to search for ob—
jects and the CNNs are used to classify the objects in the
region of interest.

There are some works on the concealed object detec—
tion for AMWI images ' where the exhaustive search
with dense sliding windows is used. Similar to the work
in Ref. 5  the authors use the CNN to multiple loca-
tions and accumulate the evidence at each location in an
image. Here however two problems would arise: 1)
interference will be mistakenly considered as concealed
objects when sliding a window over an image; 2) the
densely window sliding method makes computational
complexity significantly increased.

Because visual context plays an important role in
visual perception of object exploiting contextual informa—
tion ' in images to improve object detection perform—
ance become an increasing interest. In Ref. 91
Ref. 10 employs contextual information outside the re—
gion of interest using spatial recurrent neural networks
and shows improvements on small objects detection and
Ref. 11 proposes to detect objects in a coarse to fine
manner and give candidate region that may contain ob—
jects in the coarse step which can be regarded as anoth—
er way of using contextual information. Inspired by those
ideas we consider using contextual information in con—
cealed object detection.

In this paper we propose a low-complexity method
for concealed object detection by two steps. First we use
a big window with the width same as that of the AMWI
image and the height comparable with the object size
then we slide the window pixel by pixel from top to bot—
tom the image within each sliding window is sent to a
CNN to detect the concealed object. The merit of the big
window is that the context of the object is preserved. The
detection results are merged to give the region of interest
( Rol) . Second we slide another window from left to
right over the Rol where the concealed object is detec—
ted and localized according to the image in the window by
another CNN. This implies that the exhaustive search
and detection over an entire image '
quired.

The paper is organized as follows. In Section 1 we
give the procedures of our method and the associated
CNNs. In Section 2 the post process after the CNN is
given in detail. In Section 3 we show the experimental
results. Section 4 concludes the paper.

are no longer re—

1 Detection algorithm and the associated CNNs

1.1 The detection algorithm

In fact a concealed object could be located at any
place in an AMWI image. To detect the object it is nat—
ural to search over the entire image without a priort infor—
mation. However as mentioned in Ref. 12 this
makes the length of the computational time significantly
increased. In order to reduce the computational complex—
ity it would be better to design a method to output a set
of proposal regions which are likely to contain the con—
cealed objects for a given AMWI image.

Fig.2 An example of AMWI image and part of its selective
search results. (1) is the AMWI image( ground-iruth is in the
box) . The selective search results are: (2a) head (2b) left
arm (2c¢) right leg (2d) right hand
2 AMWI (1) AMWI
( ) (2a) (2b)
(2¢) (2d)
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Unfortunately most of commonly used region pro—
posal methods do not work well for detection of small ob—
jects " in optical images. When such methods are used
to AMWI images similar phenomenon would happen.
For example for an AMWI image part of the search re—
sults by selective search > are shown in Fig. 2 the re—
sult closest to the ground-iruth is shown in 2( ¢) where
the largest loU is only 0. 09.

In order to reduce the complexity we here recon—
sider the sliding-window method by elaborately choosing
the window size. By observing the objects in AMWI ima-
ges we find that the size of a concealed object is within
a certain range. This will help us to choose a suitable
window size for the sliding window. For convenience we
define the height and width range of a concealed object
as Hy and W, respectively. In order to reduce miss de—
tection probability we choose a window ensuring that it
can contain the largest concealed object both in vertical
and horizontal directions. As shown in Fig. 3 our meth-
od consists of two steps:

Step 1: Set the width of the window to the width of
an AMWI image and the height of the window to H,
sliding the window pixel by pixel from the top to the bot-
tom of the AMWI image. The image within each sliding
window is sent to a CCN called V_CNN which outputs
a series of detection results. The detection results are
merged to find the region of interest for further detection
process in the next step.

Step 2: Define another window with height H, and
width W,
region of interest found in Step 1. The image within each
sliding window is sent to another CCN called H_CNN.
The detection results are merged and analyzed to obtain
the final localization result.

sliding this window from left to right over the

Concealed Object Indication
in Vertical Direction

\
{: V_CNN :L'>J_L

Candidate Image

(—

Concealed Object Indication
in Horizontal Direction

Fig.3 Two-step one-dimensional search and detection process

3

1.2 Performance analysis of the algorithm

When performing two-dimensional exhaustive search
in AMWI images as shown in Fig. 4(a) the following
difficulties would be encountered for the small-sized win—
dow where one is that interferences in the window looks

similar to the concealed object which causes false a—
larm  and another is that the image in the small-sized
window loses the contextual information which eventual—-
ly increase the probability of missed detection
we show an example in Fig. 4(b) .

10
. Here

Fig.4 AMWI images and their corresponding detection results
when using a dense sliding window method. Using the method in
Ref 1
and compare it with the threshold. In Fig ( a)

we accumulate the probability of the connected region
the accumulated
probability of the connected region in the red box is greater than
the threshold which causes false alarm; In Fig (b) the accu—
mulated probability is less than the threshold in the ground-truth
region which causes the detection missed

4 AMWI

Both of the two difficulties could be overcome by
employing a big window which contains the object and its
background. As shown in Fig. 5 the big window image
contains the object ( interference) and its background.
By observing the contrast between small window images
( shown in the red box in Fig. 5) there is clearer con—
trast between the object image and interference image so
the interference can be classified more easily.

33
M-

Fig. 5

background there are clear contrasts between the ob—

When a concealed object is placed with its

ject ('knife) and the Interference ( arm)
5
() ( )

1.3 The Architecture of CNNs
The architecture of V_CNN is summarized in Fig.

6 the input of V_CNN are the images with size 60 x
152. From the input layer the first convolutional layer
contains 40 5 x5 convolutional kernels the output of the
first convolutional layer is inputted to the first max poo—
ling layer the pooling kernel size is 2 x 2 and striding
size is 2 X2. The second convolutional layer contains 30
5 x5 convolutional kernels and the second max pooling
layer is also with 2 x2 pooling kernel size and 2 X2 stri—
ding size. The third convolutional layer contains 30 5 x5
convolutional kernels and outputs to the full connect lay—
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er the full connect layer connects to the final softmax
layer. It has 2 outputs corresponding to the positive and
negative category.

56x148%40

28x74x40  24x70x30 12x35x30

60x152

::i? C::i‘ c::ﬁ

Cong po 1 con@ pod
2x2

5x5 5%5 2x2

x7 440

8x31x30
==| |== [softmax{=>

N

/
conv5x5

Fig.6 The architecture of V_CNN
6 V_CNN

The architecture of H_CNN is quite similar to that of
V_CNN. H_CNN also contains 3 convolutional layers 2
max pooling layers one full connecting layer and one
softmax layer. The convolutional kernel size is 5 x5 and
max pooling kernel size is 2 x 2.

1.4 Training Details

Labeled positive and negative samples are used to
train CNN and IoU is usually used to distinguish posi—
tive and negative samples. For example an image sam-—
ple is labeled positive with IoU > 0.5 else negative.
Here we propose a new metric called loG to define posi-
tive and negative samples. It will be proved that it is eas—
ier to detect object under big window by using loG  espe—
cially for small-size object. loG and loU are defined as:

Area( G) NArea( B)

fot = Area( G) (D
Tol = Area( G) NArea( B)
Area( G) + Area( B) Area( G) NArea( B)

. (2)

In (1) and (2) B is the sliding window inputted
to CNN and G is the ground-truth. We define the sample
with IoG >0. 8 as a positive sample otherwise a nega—
tive one.

We compare the detection performance of IoU and
loG under different sizes of windows. The IoU and loG
decision thresholds are given as follows:

ol = Area( G) NArea( B) S
" Area( G) + Area( B) Area( G) NArea( B)

3)

0.5
Area( G) NArea( B)
Area( G)

Formula (3) and (4) can be rewritten as:

Area( G) NArea( B) > % Area( G) + % Area( B)
(5)

Area( G) NArea( B) > % Area( G) . (06)

IoG = >0.8 . (4)

If using loG is more likely to detect the object then
formula (7) will hold.

?Area( G) < % Area( G) + % Area( B) = Area

(6) $% Area( B) . (7
From formula (7) we can get that if the size of the
object is less than % of the window size it is easier to

detect object using loG than using loU. Our large-size

window can ensure formula ( 7) holds so that the use of
IoG is more advantageous for object detection. The de—
tails of the comparison are shown in Section 3. 1.
Training of H_CNN is more like that of V_CNN by
using loG to classify the training samples. The difference
is that the training samples of V _CNN are obtained
throughout the entire image whereas the training samples
of H_CNN are only around the object. The fact is that V
_CNN has filtered out the samples far away from the con—
cealed object and only samples near or containing the
concealed object needs to be classified by H_CNN. By
contrast due to the use of exhaustive search in Ref.
1 there is seriously imbalance between positive and
negative samples and a large number of negative sam—
ples have to be discarded to balance the proportion of
positive and negative samples. Since we have filtered lots
of negative samples in vertical direction we do not need
to discard any negative samples when training H_CNN.

2 Detection of concealed object

2.1 Detection

When using a window sliding over the image CNN
will output a series of classification results. There are
three kinds of results: the pulse-ree output the output
with only single pulse and the output with a number of
pulses. It is evident that the pulse-free output is associat—
ed with none of the concealed objects detected while the
output with only single pulse implies that a concealed ob—
ject 1s present.

The ideal result can be represented by

. lp<sisp+!

S"l( i) = { ! 0 g else (8)
where p is the starting position of the pulse [ is the pulse
length. Assuming W is the window width N indicates
the number of sliding times of the window. Then p and [
are constrained by (9) .

lspsNO<IsW . (9)

Assuming that the real result is Y the square error

between Y and S is denoted by E FE can be considered
as the function of (p [) and is defined by ( 10) .

N
E(p ) = (Y -S(d))* . (10)

It is seen that by minimizing E (p [) we can find
a solution ( p,g [,;) and obtain the final detection re—
sult. However it is hard to obtain an analytic solution of
the problem by minimizing ( 10) . Due to the fact that
(p ) belongs to a finite set exhaustive search can be
used. An example of the solution is shown in Fig. 7. We
slide a window from top to bottom over an AMWI image
the images in all the sliding windows are inputted to V_
CNN and a series of classification results are obtained
( denoted by the black line) . The horizontal axis is the
vertical position of each window and the vertical axis is
detection score associated with the position. The detec—
tion score is Y in equation ( 10) . By minimizing ( 10)
we have the solution ( p,g I,5) and plot the final result
( denoted by the red line) in Fig. 7. It can be seen that
even if the detection results have some errors the final
result is still close to the ideal result.

After (p,s [,5) is obtained the width of the pulse
can be determined by K =1[,;. An intuitive inference is
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Fig.7 Detection result by minimizing ( 10) ( The black line
is the detection score from V_CNN and the red line denotes the
result using the parameter obtained by minimizing ( 10) the
blue line represents an ideal output generated by ground-truth)

7 (10) ( A
_CNN ; (10)

that the smaller K is the more likely it is to be a false a—
larm. Here we formulate this issue under the framework
of distributed detection "* . The issue can be considered
as a two hypothesis detection problem with individual de-
tector decisions being the observations. In the problem
the window images are employed as distributed inputs
and CNN is local decision maker. w, u, *** ug are the
local decisions sent to the fusion center. The output of
the final decision is u, representing whether a concealed
object is detected. Assuming the event that an object is
present is H, the opposing event is H,. Their probabili-
ties are P, and P,.

According to Bayes’ theorem the posterior proba—
bility of detection can be written as:

POH, [y o) =
Pyox Py o g ‘Hl)
Pyox Py o g ‘Hl) + Py x P(u, Mz"':UJK‘HO)
(11)
Because each local detector makes a local decision
based on its observation there is no communication a—
mong them u, w, i are conditionally independ-
ent. Eq.(11) can be written as:

POH, |y, py) =
Py x 11, P(; | H,)

P, x Hf:l + Py x HF:IP(/-L:' ‘HO)

In Eq. (12)  P(pu, \Hj) is obtained from CNN P,
is the prior probability of H,. By checking the value of e-
quation ( 12) it is easy to identify whether the pulse is a
false alarm or representing a concealed object.
2.2 Size estimation of concealed objects

By using window sliding over the image a typical
detection result is shown in Fig. 8. In fact the bounding
box is too large for the object in most cases. Here we
use an analytic result to estimate its size in each dimen—
sion.

As shown in Fig. 9 assuming that the width of the

(12)

Fig.8 Detection result by using V_CNN and H_
CNN ( ground-truth is the dashed box)
8 V_CNN H_CNN (
)

3

Fig.9 Spatial relation between the sliding win—
dows and the object ( object is indicated in red
box and sliding windows in dashed box)
9 (
)

and the
then we can have Eq.

sliding window is W, the object width is W,
detected pulse width is W,
(13).
W, =W, +2x (W, -0.8xW,) -W, =W, -0.6 xW,
(13)
From Eq. ( 13) the size of the concealed object
can be estimated.

3 Experimental results

3.1 Comparison of detection performance using
IoU and IoG
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Before comparing the final experimental results we
compare the detection performance of IoU and loG under
different window sizes and object sizes by experiments.
For simplicity we use an exhaustive search method such
as that in Ref. 1 and assume the detection result is i-
deal. We choose three kinds of objects with large ( pis—
tol) medium ( cell phone) and small ( knife) size and
two sizes of windows ( 28 x28 and 36 x36) for compari-
son.

Test results using 28 x 28 window size

As shown in Fig. 10 we slide the window over the
entire image and show the detection results by using loU
and loG. It can be seen that when the window size is
small formula (7) does not hold for big object like pis—
tol the detection result using loG is worse than that u—
sing loU ( fewer detection times) . For medium object
like cell phone ( in Image2) the detection result using
oG is better for that formula ( 7) holds. The image with
knife ( Image3) is an extreme case; formula (3) and
(4) do not hold for the entire image which will lead to
miss detection.

Test results using 36 x 36 window size

As shown in Fig. 11  when we increase the window
size formula (7) holds for all the three kinds of con—
cealed objects and the performance is better by using
ToG. In Image2 formula (3) is no longer valid for cell
phone with the increase of the window so it leads to miss
detection by using loU. It should be noted that in Im-
age3 even if we increase the window size knife still
cannot be detected using loU. The reason is that the as—
pect ratio of the window and the aspect ratio of the object
are seriously mismatched. However loG is not sensitive

Imagel  1oU Results 1 loU Results 1 Image2

Fig. 10
The concealed objects are pistol ( Imagel)
10 ( ) IoU
(2 ( 3. 28 x28
Imagel  loU Results 1 loU Results 1~ Image2
Fig. 11

11 10

loU Results 2 loU Results 2

loU Results 2 loU Results 2

36 x36

to the aspect ratio mismatch so the slender object can be
detected.
3.2 Comparison of detection performance

We use the same dataset as in Ref. 1  the data—
set is collected from the SimImage system of Chinese A—
cademy of Sciences. There are 440 images in the data—
set and among those there are 400 ones with concealed
objects including knives pistols and cell phones. 308
images are used for training and 132 images for test.
There are 114 images with all the three kinds of con-
cealed objects and 18 images without concealed objects
in the test dataset.

Some of the detection results are shown in Fig. 12.
Using the same criterion as in Ref. 1 miss detection
is defined that a window output with ToU less than 0. 3.
The statistical data of this experiment is shown in Table 1.

Table 1 Detection Results
1

Images with

concealed object Number False Alarm Miss Detection
Y 114
N 18
Total 132

We use precision accuracy and recall to compare
our method with 1 . Their definitions are as follows:
True Positives

Precision =
True Positives + Flase Positives

True Positives + True Negtives
Positives + Negtives

Accuracy =

Image3  loU Results 3 loU Results 3

Images with three kinds of concealed objects ( in the box) and their corresponding detection results using IoU and ToG.
cell phone ( Image2) and knife ( Image3) . The window size is 28 x 28
ToG . (1

Image3  1loU Results 3 loU Results 3

The same images as in Fig. 10 and their corresponding detection results using loU and loG. The window size is 36 x 36

IoU  IoG
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Fig. 12
truth are inside the dashed boxes ( from left to right the con—

Localization results for different objects the ground—

cealed objects are cell phone knife and pistol)

12

True Positives
Positives

The comparisons with Ref. 1 are shown in Table
2 where the precision accuracy and recall are all im—
proved using our method. The better results lie in the ad—
vantages of our two CNNs method: 1) using V_CNN to
filter out most of the interference which can effectively
reduce false alarm probability; 2) using big window to
preserve the context for object and using loG to classify
objects which can reduce miss detection probability.

Recall =

Table 2 Detection Results Comparison

2
Items Precision Accuracy Recall
Dense Sliding Window Method ! 95.5% 93.2% 93%
Our Method 98.2% 96.9% 98.2%

3.3 Comparison of computational efficiency

Compared with the dense sliding window method '
another advantage of this method lies in its lower compu-
tational complexity. Unlike Ref. 1  our method only
performs exhaustive search in vertical direction so the
length of the computational time can be significantly re—
duced.

We use GTX 650 from Nvida to test the testing time
( seconds/image) . Our method process images 3.5 X fas—
ter than Ref. 1 . The comparison is shown in Table 3.

Table 3 Run Time Comparison

3
Max time Min time Mean time
Ttems . . .
/img /img /img
Dense Sliding Window Method ! 2.11s 1.82 s 1.93 s
Our Method 0.58 s 0.53 s 0.55 s
Time Speedup 3.6 x 3.43 x 3.55 x

4  Conclusions

A low complexity method is presented to detect con—
cealed object in active millimeter-wave image. This
method employs two CNNs for detection in vertical and
horizontal direction and achieves better detection per—
formance than the method using dense sliding window.
This method also has the advantage in computational
complexity which reduces the length of the computation—
al time to lower than 30% of that of the exhaustive
search. In addition without size estimation our method
can be used as a region proposal method to generate Rol
for object detection.
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