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Realization of a continuous-zoom infrared optical system
with high ratio and large relative aperture

YU Yang' *  ZHOU Pan-Wei' > PAN ZhaoXin'>  JIAN Yi'?
(1. Shanghai Institute of Technical Physics Chinese Academy of Sciences Shanghai 200083 China;
2. Key Laboratory of Infrared System Detection and Imaging Technology Chinese Academy of Sciences Shanghai 200083 China)

Abstract: A new continuous zoom structure was described and a new independent zoom group was
added on the classical four-group-mechanical-compensation. And larger zoom ratio was achieved by the
way of two zoom groups cascading. This mathematical model was deduced. Then according to the
cooled mid-wave infrared detector a continuouszoom infrared optical system with large zoom ratio
and large relative aperture was designed. And the problem that it” s hard for a zoom optical system to
achieve both large zoom ratio and large relative aperture was solved. This optical system can zoom
from 6 mm to 330 mm which means it can reach 55x zoom ratio while the F number is 2 constantly.

The working waveband was 3.7 ~4.8 um the cold shield efficiency was 100% . It contains only eight
lenses three of them move in order to change the focal length. The result shows that the zoom curves
are quite smooth and the image quality is quite good in the whole zoom range. The laboratory test and
the out-door imaging experiment shows that the image quality is quite good in the whole zoom range. Tt
proves the application effect of this new kind of zoom model and shows that the system reaches its de—
sign goal.
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Fig.1 New Zoom Model Structure
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Table 1 Focal plane array parameters

640 x512

Pixel number

Pixel size 15 um x 15 um

Spectral range 3.7 um ~4.8 um
F number 2

Type Cooled FPA
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2
Table 2 Optical system parameters 1 )
Focal length 6 mm-330 mm
Field of view ( FOV) 91.4°2.1° N
Zoom Ratio 55x 1 2
Entrance pupil diameter 3 mm-65 mm
F number 2
Notel 100% cold-shield match
Note2 continuous zoom
2.2
2 N
fesmas0 o M
100%
#EFE250 mm {
FEFF168 mm H
1700
418 mm 460
mm 168 mm.
F 2
=6 mm
941
5 .
Fig.2 Optical system layout
2
2 3 . .
4 2 5-6 7-~8 .
A
A=d, = 23
max NO - 1 ( )
N, =4.02278
N A=4.2 pm A =1.389 pm.
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Fig.4 Optical system cam curves
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