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Atomic-Layer-Deposited ultrathin films of vanadium pentoxide crystalline
nanoflakes with controllable thickness and optical band-gap
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Abstract: Thin films of crystalline V,0; nanoflakes were prepared through atomic layer deposition ( ALD)

process. The film thickness was verified to play a critical role in determining structural morphology

optical

bandgap and Raman vibration of crystalline V, 0y thin films. Two optical bandgaps observed at about 2.8 eV and

2.4 eV result from two growth stages during ALD preparation. We expect that these results help to understand the

growth control of ultrathin films and their functional devices.
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Introduction

Two-dimensional layered transition metal oxides
have attracted considerable attention due to their intrigu—
ing chemical activity distinctive electrical and optical
properties. The layered nanostructures have shown prom—
ises in facilitating functional devices including optical '
and electronic devices > sensors °  and rechargeable
lithium batteries ** . Among these layered transition
metal oxides layered V,0; materials have been widely
investigated due to its low cost nature abundance and
high charge storage capability. Some investigations have
recently demonstrated V,0,-based electrochromism ®”
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Crystalline V, Oy thin films play a vital role in improving
the performances of functional electrodes ' * . In order
to optimize electronic or ionic conductivity the nanoscale

thicknesses of V,0; films are controlled to improve ionic

diffusion *' and electronic transportation > * . In gen—
eral the film thicknesses of layered V,0; materials in—
tensely affect their optical and electrical properties. It is
known that atomic layer deposition ( ALD) is an excel—
lent technique to precisely control the thickness of func—
tional films on complicated configurations ** . In this pa—
per we present the preparation of crystalline V,0s thin
films with controllable thickness of several nanometers
through an ALD process at low temperature. The investi—
gations focus on the relationships between the film thick—
ness and surface morphology optical bandgap and pho-
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non vibration of crystalline V,0; thin films. Meanwhile
the distinctions between the initial stage and the follow—
up stage are discussed to reveal the growth process of
V, 0 ultrathin films during the ALD process.

1 Experiments

V, 0 thin films were deposited on the silicon or sili—
ca substrates by using oxygen plasma and triisopropoxy—
vanadium oxide ( VTOP) as precursors in an ALD reac—
tor ( Picosun-R200) at 200°C. N, and Ar were used as
carrier gases for oxygen plasma and VTOP respectively.
When the pressure was 80 Pa in the ALD chamber the
pulse time of VTOP and oxygen plasma were 0.7 s and
1.5 s respectively.

The surface morphologies were examined by atomic
force microscopy ( AFM NT-AIST) in a tapping mode.
Scanning electron microscopy ( SEM) images were ob—
tained on FEI Sirion200 and transmission electron mi—
croscopy ( TEM) images were obtained on JOEL JEM-
2100F performed at an accelerated voltage of 200 kV. X-
ray photoelectron spectroscopy ( XPS; Axis Ultra DLD)
was used for elements analysis. X-ray diffraction ( XRD)
patterns were collected on Bruker D8 with a monochro—
matic source of Cu—-Ka radiation (A =0. 154 18 nm) at
1.6 kW (40 kV 40 mA) . Raman spectra were obtained
using TII Tokyo-Nanofinder 30 at room temperature.
Spectroscopic ellipsometry ( SE) was performed on J. A.
Woollam-M2000X+B300XTF at an incident angle of
65°. UV-Vis-NIR absorption spectra were measured u—
sing PerkinElmerd.amda 950 spectroscopy with an inte—
gration sphere accessory.

2 Results and discussions

Fig. 1 shows SEM and AFM images of V,0; thin

films deposited with different thicknesses by controlling
ALD cycle numbers on silicon substrates. The represent—
ative surface morphology is related to the film thicknesses
with different ALD cycle numbers. When the thickness is
less than 1 500 ALD cycles the films are with smooth
surface as shown in Fig. la and 1b. As the films thick—
ness increases the small grains grow up and finally e-
volve into orthorhombic shaped crystallites ( Fig. 1c-e) .

The crystal nucleation and growth may determine the sur—
face morphologies of V,0O; thin films due to the formation
of V,05 nanoflakes during ALD procedure * ** . The
use of O, plasma leads to the crystalline nanoplates with
sharp-shaped edges.

Stoichiometric ratio is critical for vanadium oxides to
determine the crystalline structure and morphology.
Thus XPS and XRD were utilized to investigate the com—
positions and structures of thin films with different thick—
nesses ( Fig. 2) . The Binding energies at about 517. 24
and 524. 68 €V result from 2p,,, and 2p,,, of vanadium
element. There is an energy difference of nearly 7.4 eV
between V 2p,,, and 2p,,, which implies the existence

of V' oxidation state ”’ . In addition the V™* oxidation
state is not detected in XPS. All these results suggest the
formation of V,0; thin films during ALD procedure. For

two thin films with thicknesses of 500 and 2000 ALD cy-
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Fig. 1 Top-view SEM (up) and AFM ( down) images of V,0,
thin films with varying thicknesses of (1a) 300 (b) 1500 (c)
3000 (d) 4500 (e) 7500 ALD cycles
| SEM( )
:(a) 300 (b) 1500 (¢) 3000
() 7500

AFM( )
(d) 4500

cles the band energies of V 2p are almost the same.
However except for O 1s peak at 530.36 eV there is
an obvious peak at a binding energy of ~ 532.1 eV
( Figure 2b) in the case of the films with a thickness of
500 ALD cycles. This result may be related to H,O mol—
ecules absorbed in the films and the thinner films are
easily affected by the adsorbed molecules.

Fig. 3 shows Raman spectra of the lattice variations
in V,0j5 thin films with different thicknesses. For all the
V,0;5 films with different thicknesses by varying ALD cy-
cles Raman shifts at 102 145 197 284 405 484
and 700 ¢cm " are in agreement with those previously re—
The intensity of Raman peak rises as the
The Raman
shifts at 303 and 526 em ™' are indistinguishable because
the Si substrates have obvious Raman shifts at about 300
and 520 cm~'. Raman shifts at 145 ¢cm ™' are the most
obvious and come from a mixture of B,, and B,, vibra—
tions. The B,, and B;, modes correspond to the shear and
rotation motion of V-0, bond ladders respectively ( Fig.

3e) * . This bending mode is strongly associated with
the layered structure * . There is a slight blue-shift at
145 cm ™" when the thickness of V, 0, thin film decreases
from 1 500 cycles to 300 cycles which indicates the
presence of a little strain occurred in the initial growth
stage of the layered thin films ( Fig. 3b) . This observed
shift may result from small compression strain along c-ax—
layered V,0; structure reported else—

. No detectable changes are found in Fig. 3¢

ported * .
thickness of V,0; film increases ( Fig. 3a) .

is in the
30 31
where

and 3d.

As mentioned above for thin films with varied
thicknesses the surface morphology and XPS spectra are
different. Thus spectroscopic ellipsometry ( SE)  cross—
sectional SEM and TEM measurements are further per—
formed to understand the essential growth process of
V, 05 ultrathin films. Fig. 4a shows the relationship be—
tween the thickness and ALD cycle number. The thick—
nesses are obtained from SE and SEM measurements. As
shown in Fig. 2f there is a silica layer with about 2 nm
between silicon substrate and V,0; thin film. Thus a
threedayer model is used in SE data and analysis. More—
over the surface roughness is also considered in SE a—
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Fig.2 (a b) V 2p,,, and O 1s peaks of XPS spectra for
V,0; films with a thickness of 500 ALD cycles respective—
ly and (¢ d) with a thickness of 2000 ALD cycles. ( €)
XRD patterns of V,05 films with varying thickness; ( f)
TEM image of V,0; films with a thickness of 2000 ALD cy—

cles

2 (a b)500 V2p,, Ols
XPS (¢ d)2000 V 2ps)
01s XPS (e XRD  (f)

2000ALD TEM

nalysis and can be obtained from the RMS roughness in
AFM measurements. For example for the V,0; film pre—
pared with 7500 ALD cycles we can use SE simulation
to obtain a thickness of 215 nm which is also verified by
cross-sectional SEM measurements. Fig. 4a suggests the
effective thickness increases linearly with ALD cycles. In
the range from 1500 to 7500 cycles the growth rate is a—
bout 0. 3 A/cycle. However the growth rate is about
0.2 A/cycle in the range from 100 to 1500 cycles. The
ratio of Rms roughness to thickness remains relatively
stable although the Rms roughness increases with the in—
creasing ALD cycles as shown in Fig. 4b. The variation
trends of both growth rate and surface morphology indi—
cate that there are two growth stages during the formation
of V,05 thin films which may be understood with the

Stranski-Krastanov growth mode ** . Once the film thick—
ness is up to a critical thickness the growth modes
change from the layer growth to the island-based growth.

In the initial layer growth stage the V,0; films are very
thin and almost parallel to surface by the reaction be—
tween ALD precursors and substrates. The growth is self—
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(a) Raman spectra of V,0; films with various thick—

respectively. (e) Schematic

limiting on the substrate which results in a low surface
roughness. Once the V,0; ultrathin films form the pre—
cursor molecules are easily adsorbed and selectively reac—
ted with V,0, nanoflakes which leads to an improved
growth rate and an island-based growth mode.

Fig. 5 displays Tauc plots derived from SE and UV—-
Vis-NIR absorption spectra. The V,Oj5 ultrathin film has
an indirect bandgap and the bandgap red-shifts from
2.66 eV to about 2. 40 eV when the thickness increases
from 50 to 300 cycles ( Fig. 5a). Furthermore Figure
3¢ suggests a bandgap of 2. 36 €V for the thin film with a
thickness of 500 ALD cycles prepared on quartz sub-—
strate which is in agreement with SE simulation. The
red-shift can be attributed to the quantum size effect.
Once the thicknesses increase up to more than 1000 ALD
cycles two bandgaps are identified as shown in Fig. 3b
and 3d. One stays at 2.40 eV and the other varies from
2.73 eV to 2.90 eV. The formation of two bandgaps
might result from the two growth stages mentioned above.
In the layer growth stage the bandgap decreases with the
thickness increasing. Then the thin film subsequently
grows up and another bandgap appears while the primary
bandgap of the initial ultrathin film remains. Small grains
form in the thin films during the island-based growth
stage which leads to a larger bandgap. All these results
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Fig.4 (a) Relationship between thickness and ALD cycle )
numbers the inset shows the schemtic structure of thin film 2 Granqvist C G Arvizu M A Bayrak Pehlivan 1 et al. Electrochromic
materials and devices for energy efficiency and human comfort in build—

Electrochimica Acta 2018 259: 1170-

deposited on the Si substrate. (b) Plots for the relationships
ings: A critical review J .
1182.

between Roughness and roughness-thickness ratio and ALD

cycle numbers
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vanced Energy Materials 2017 7(12): 1601906.
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suggest that the optical properties of V,Oj thin film could
be adjusted by the control of film thickness during an
ALD process.
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. 6 Vernardou D. Using an atmospheric pressure chemical vapor deposi—
3 Conclusions °
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vestigations on surface morphology optical bandgap and
Raman vibration confirm that the film thickness of crys—
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from two growth stages during the ALD preparation of 2017 121(1) : 7099.
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