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Hybrid dual wedge plasmonic waveguide with long-range propagation

and subwavelength mode confinement
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Abstract: A hybrid dual wedge plasmonic (HDWP) waveguide consisting of two dielectric wedges and a diamond
metal wire was proposed. The coupling between dielectric wedge waveguide mode and long-rang surface plasmon
polariton mode results in both low propagation loss and ultra-deep-subwavelength confinement. The HDWP
waveguide achieves a normalized mode area of 2.9 x 10 ~* with a moderate propagation length of 532 wm or a prop-
agation length of 3028 pum with a normalized mode area of 6.2 x 10 *. The impacts of possible fabrication imper-
fections on the mode properties are studied. The results indicate that the HDWP waveguide is quite tolerant to fabri-

cation errors.
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Introduction

The miniaturization and high-integration density of
photonic integrated circuits''! have always been a signifi-
cant research subject that attracts many researchers. Sur-
face plasmon polariton ( SPP) waveguide is viewed as
one of the most promising candidates for large-scale pho-
tonic integrated devices, owing to its unique capabilities
of breaking the diffraction limit and providing tight light

]

confinement in deep subwavelength scale'”*'. Many
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waveguide structures based on SPP have been proposed
and studied, such as metal slot SPP waveguides”® | V-
groove channel SPP waveguides'”"") | and wedge SPP
waveguides' > These SPP waveguides could offer tight
confinement of light but suffer enormous propagation loss
due to the metallic ohmic loss'"”. In order to improve
the trade-off between mode confinement and propagation
loss, several hybrid plasmonic waveguides have been
proposed' **! " These hybrid plasmonic waveguides guide
light not only by the SPP along the metal/dielectric inter-
face but also by the dielectric index contrast near the
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metal surface as well. The hybridization between dielec-
tric waveguide mode and pure SPP mode could be tuned
by changing waveguide parameters. Then the characteris-
tics of the hybrid mode could be transformed from SPP-
like to dielectric-like. In this paper, we design a hybrid
dual wedge plasmonic ( HDWP) waveguide which is
composed of two identical dielectric wedge waveguides
and a diamond metal wire, these two wedge waveguides
are symmetrically placed on two opposed wedges of the
diamond metal wire. Compared with the previous long-
range  hybrid  wedge  plasmonic = ( LRHWP )
waveguide ' | our HDWP waveguide can provide stron-
ger mode confinement for similar propagation length or
longer propagation length for alike mode confinement.
Possible practical fabrication imperfections of the pro-
posed HDWP waveguide are also investigated in detail.

1 Waveguide structure and mode prop-
erties

Figure 1 illustrates the geometry of our proposed
HDWP waveguide, where two identical silicon ( Si)
wedge waveguides (SWWs) with a height of H are sym-
metrically placed on two opposed wedges of a diamond
silver (Ag) wire with a small gap g, and the surrounding
low-index dielectric material is silica (SiO,). The tip of
the Si wedge has an angle of o and a curvature radius of
r. The diamond Ag wire has a fixed cross section area of
1200 nm*'™’ | and its tip has an angle of @ and a curva-
ture radius of r. The typical value of the curvature radius
is selected as r =10 nm'”"’ by considering practical fabri-
cation conditions. The working wavelength is 1550 nm in
our simulations. The corresponding permittivities of
Si0,, Si and Ag are €, =2.25, €, =12.25 and ¢, =
- 129 + 3. 3i, respectively ™ *'. The mode properties
of the proposed HDWP waveguide are studied using the
finite-element method (FEM) with the perfectly matched
layer (PML) boundary condition.

Fig. 1  Schematic illustration of the pro-
posed HDWP waveguide
K1 HDWP i 3451 s A

Figures 2 (a-b) show the propagation length (L;)
and normalized mode area (A_/A,) of the HDWP

waveguide as functions of the Si wedge height H at differ-
ent gap g. In this simulation, the parameters used are 6
= a = 100°. The propagation length and normalized
mode area both decrease at first and then increase along
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H/nm H/nm
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Fig.2 (a) Propagation length (L,) and (b) normal-
ized mode area (A,;/A,) as functions of the Si wedge

height H with different gap g. (c)-(h) Electromagnetic
energy density distributions; (¢) [H, g] =[400, 25]
nm, (d) [H, g] =[400, 2] nm, (e) [H, g] =[200,
25] nm, (f) [H, g] =[200, 2] nm, (g) [H, g] =
(100, 25] nm, and (h) [H, g] =[100, 2] nm

2 (a) B EM(D) H— N mARAEAF g
WbFEE H A4S B, (o) -(h) HL G 3 fig & 5 B 19 4
AE O, XN H, g] BRI A : (¢) [400, 25]
nm, (d) [400, 2] nm, (e)[200, 25] nm, (f)[200,
2] nm, (g)[100, 25] nm, (h)[100, 2] nm

with H. When H changes from 150 nm to 200 nm, the
propagation length and normalized mode area both a-
chieve smaller values. For H > 200 nm, the HDWP
waveguide supports a low-loss SWW-like mode with elec-
tromagnetic energy restricted to the high-permittivity Si
wedge core [ Figs. 2 (c-d) ] L) Inversely, the HDWP
waveguide mode behaves as a LRSPP-like mode for H <
150 nm [ Figs. 2(g-h) ], resulting in a long propagation
length and a large mode area'"®’. At moderate Si wedge
height ( H changing from 150 nm to 200 nm) , mode cou-
pling leads to a new hybrid mode that features both SWW
mode and LRSPP mode characteristics [ Figs. 2 (e-
£) 1" In addition, the propagation length and normal-
ized mode area both increase along with the gap g [ Figs.
2(a-b) ]. It is worth mentioning that most of the hybrid
mode energy becomes strongly confined in the SiO, gap
region as the gap g decreases to the nanometer scale
[Figs. 2(d), (f), and (h)]. Compared with the
LRHWP waveguide ( parameters of the LRHWP
waveguide are § =140° ,h =2 nm, and d =240 nm) (6]
our HDWP waveguide can achieve similar propagation
length of 532 pum at H =200 nm g =2 nm, while the
normalized mode area of 2. 9 x 10~ of the HDWP
waveguide is about 2. 3 times smaller than the LRHWP
waveguide ™.

To get a deeper understanding, we show the de-
pendence of the hybrid mode’ s effective refractive index
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Fig.3 Dependence of (a) the hybrid mode’ s effective refrac-
tive index (nypywp) Of the HDWP waveguide and (b) the mode

character (MC) determined by Eq. 1 on the Si wedge height H
and gap g. The black solid line and black dash line in (a) re-
present the effective refractive indices of the SWW and LRSPP
modes, respectively

K3 (a) IR HEAA AT ST R M (b) BB H A
g HIAALTE L, (a) Ay R (0 S AR 2k 20 3 AR SWW AL
LRSPP #x 1A 8 4T %

of the HDWP waveguide (nypyy) on H and g in Fig. 3
(a). The chosen parameters in Fig. 3 is the same as
Fig.2. The hybrid mode’ s effective index approaches to
the refractive index of the SWW or LRSPP mode in the
limit of SWW-like or LRSPP-like mode, respectively.
The mode hybridization can be studied using the coupled-

mode theory in Ref. [ 18], where the mode character
(MC) is defined as

MC =

Nppwp ~ Mygspp (1)
(npwe = Mgser) + (Mypwe = Ny )
where npepp and ngyy are respectively the effective re-
fractive indices of the LRSPP mode and SWW mode. In
this regard, the mode is SWW-like for MC > 0.5 and
LRSPP-like otherwise. As shown in Fig. 3(b), MC is
about 0.5 when H varies from 150 nm to 200 nm, indi-
cating the strongest coupling between the SWW and LR-
SPP modes. When H > 200 nm (H < 150 nm), MC
> 0.5 (MC < 0.5), the mode is SWW-like ( LRSPP-
like) , which is consistent with the above analysis.

The dependence of propagation length (L,), nor-
malized mode area (A/A,), and figure of merit
(FoM) ') on « at different @ is shown in Figs. 4 (a-
c¢), respectively. The Si wedge height H and gap g are
respectively set as 200 nm and 2 nm in this simulation.
The propagation length and normalized mode area both
decrease firstly and then increase with an increase in « or
0. The normalized mode area at § = a = 100° is little
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Fig.4 Dependence of (a) propagation length (L,), (b)
normalized mode area (A,/A,), (c) figure of merit
(FoM), and (d) the ratio of the electromagnetic energy in
the metal region to the total electromagnetic energy of the HD-
WP waveguide on the Si wedge tip angle « at different 9
K4 (a) el (b) H—AbEsCm R (c) FoM Fl(d)
E R i RERE R (SR R LU BITEAR TR 1Y 6 AL BERE M
o AR

larger than the minimum value at # = 60° a = 100°,
but the FoM at & = a = 100° is larger than that at 8 =
60° o = 100° (Fig. 4(c)), that is why we set § = «
= 100° in Fig. 2. To understand the behavior of the
propagation length, we depict the ratio of the electromag-
netic energy in the diamond metal region to the total elec-
tromagnetic energy of the HDWP waveguide in Fig. 4
(d). The ratio increases and then decrease as o or 6 in-
creases, which is opposite to the change of propagation
length. This is consistent with our knowledge that the
smaller the ratio, the less the loss and the longer the
propagation length.  Compared with the LRHWP
waveguide (parameters of the LRHWP waveguide are 0
= 140°, h = 2 nm, and d = 240 nm)"*’ | our HDWP
waveguide can obtain similar normalized mode area of
6.2x10 7 at @ = 20° @ = 50°, while the propagation
length of 3028 wm of the HDWP waveguide is about 4. 6
times longer than the LRHWP waveguide' ™.

2 Analysis of fabrication error tolerance

It is difficult to fabricate perfect HDWP waveguide
structure considering practical fabrication conditions.
Hence, it is necessary to analyze possible practical fabri-
cation imperfections (i. e. , fabrication error tolerance )
including misalignment between the diamond metal wire
and the Si wedge, asymmetric positioning of two Si wed-
ges with respect to the metal wire, and tilt or rotation of
the metal wire. In all analyses of fabrication error toler-
ance, the HDWP waveguide parameters used are g =2
nm, H=200 nm, and § =« =100°.

2.1 Misalignment along the horizontal direction

The deviation of Si wedges from the diamond metal
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wire might affect the mode properties. There are three
kinds of misalignment along the horizontal direction, as
illustrated in Figs. 5 (a-c). Figures 5(d) and (e) re-
spectively show the influence of the three types of mis-
alignment on propagation length and normalized mode ar-
ea, where the insets are the corresponding normalized e-
lectromagnetic energy density distributions. The proposed
HDWP waveguide suffers less than 20% variation of
propagation length and about 10% undulation of normal-
ized mode area under 10 nm misalignment for misalign-
ment 1. For misalignment 2 and 3, the propagation
length is subjected to < 8% fluctuation and the mode
area sustains < 20% undulation under 4 nm misalign-
ment.

dx dx

dx dx

(a) Misalignment 1

(b) Misalignment 2 (c) Misalignment 3

10

5 0 0 5
dx/nm dx/nm
(d) (e)
Fig.5 Schematic views of (a-c) three kinds of misalignment
along the horizontal direction and influence of the three types of
misalignment on (d) propagation length (L,) and (e) nor-

malized mode area (A,/A,). Insets: the normalized electro-
magnetic energy density distributions
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2.2 Asymmetry in the vertical direction

The asymmetry of two Si wedges with respect to the
metal wire, 1. e. , different distance of upper and lower
gap, might have effect on the mode properties. Figures 6
(a-b) show the dependence of propagation length and
normalized mode area on one gap changing from 2 nm to
12 nm and the other gap setting at 2 nm. As one of the
gaps increases from 2 nm to 12 nm, the propagation
length changes from 532 pm to 726 pm and the normal-
ized mode area varies from 2.9 x 10 t0 4.6 x 10 *. In-
sets in Figs. 6(a-b) are the corresponding normalized e-
lectromagnetic energy density distributions.
2.3 Tilt or rotation of the metal wire

The diamond metal wire may rotate from its center
point with an angle d#, which might influence the mode
properties. Figures 7(a-b) show that the proposed HDWP
waveguide suffers about 3% fluctuation of propagation
length and approximately 10% variation of normalized
mode area under 10° tilt or rotation of the metal wire.

The obtained results suggest that the practical fabri-
cation imperfections in geometry parameters like slight
misalignment along the horizontal direction, asymmetry

Fig. 6 Influence of the asymmetry in the vertical direction
(different distance of upper and lower gap) on (a) propaga-
tion length (L,) and (b) normalized mode area (A,/A,).
Insets: the normalized electromagnetic energy density distribu-
tions
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Fig.7 Influence of tilt or rotation of the metal wire on (a)
propagation length (L, ) and (b) normalized mode area

(A/A, ). Insets: the normalized electromagnetic energy
density distributions

K7 @R U A (a) e K BE R () 10— L
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in the vertical direction, and tilt or rotation of the metal
wire have modest influences on the mode properties.

3 Conclusions

We demonstrate a HDWP waveguide composed of
two identical triangular wedges which are symmetrically
placed on a diamond metal wire, and investigate the in-
fluence of the geometrical parameters on the propagation
length and normalized mode area. Compared with the
LRHWP waveguide mentioned above, our proposed HD-
WP waveguide has better performance. In other words,
with similar propagation length, the normalized mode ar-
ea for the HDWP waveguide is approximately 2. 3 times
smaller than that of the LRHWP waveguide; and with a-
nalogous mode confinement, the propagation length of
our HDWP waveguide is about 4. 6 times longer than that
of the aforementioned LRHWP waveguide. Moreover,
our designed HDWP waveguide has good tolerance to the
possible fabrication imperfections, including misalign-
ment along the horizontal direction, asymmetry in the
vertical direction, and tilt of the metal wire. The favora-
ble performance of our HDWP waveguide makes them va-
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rious potential applications in subwavelength devices,
such as nanophotonic waveguides, optical tweezers,
nanolasers, and so on.

Methods

The propagation length (L,), defined as the dis-
tance for the SPP intensity to decay by a factor of 1/
e is calculated by

L, = M/ [4mw Im(n) | , (2)
where Im(n;) is the imaginary part of the effective re-
fractive index and n; is calculated by FEM.

The normalized mode area is defined by A, /A,,
where A, is the diffraction-limited mode area and defined
as A°/4, and the effective mode area A is evaluated

by[lfﬂ

AM=EQ%GWHmn&r . (3)

where W(r) is the electromagnetic energy density and is
given by

wir) = {0 5 o 17} @)

The figure of merit (FoM) is the ratio of the propa-
gation length to the diameter of effective mode area ™

FoM = L,/(2 JA,/™) . (5
FoM is an important parameter that provide a proper
assessment for the trade-off between the propagation

length and effective mode area.
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