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Abstract: Ultrafast terahertz ( THz) modulation characteristics of organolead halide perovskite films ( CH3NH3PbI3
and CH3NH3PbI3-xClx ) were investigated on picosecond time scales using time-resolved THz spectroscopy． Upon
photo-excitation，a transient decrease in THz transmission was observed． Compared with CH3NH3PbI3，

CH3NH3PbI3-xClx showed a better modulation depth ( 10% ) within the range of the photo-excitation powers used．
The mechanism underpinning this photoconductive ultrafast response was determined by measuring the transmission
properties and calculating the carrier density． The larger crystalline bulk of the CH3NH3PbI3-x Clx film produced
higher carrier densities than the CH3NH3PbI3 film． These results demonstrate that CH3NH3PbI3-xClx films are prom-
ising materials for developing high-performance THz modulators and ultrafast switchable THz photoelectric devices．
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太赫兹时间分辨系统研究有机卤化物钙钛矿薄膜的超快太赫兹调制
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摘要: 研究了利用太赫兹时间分辨系统研究有机卤化物钙钛矿薄膜( CH3NH3PbI3 and CH3NH3PbI3-xClx ) 的皮

秒尺度的超快太赫兹调制特性． 在光激发作用下出现了太赫兹透射波的瞬时下降． 相比于 CH3NH3PbI3 薄膜，

在光激发作用下 CH3NH3PbI3-xClx 薄膜展现了更高的调制深度( 10% ) ． 通过测算材料的电导率及载流子浓

度，其调制机理为瞬态光激发载流子浓度上升． 实验结果表明，CH3NH3PbI3-xClx 薄膜可作为一种高效超快太

赫兹调制器件．
关 键 词: 太赫兹; 有机卤化物钙钛矿; 超快调制
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Introduction

Organometal halide perovskites have attracted con-
siderable attention because of their excellent photoelectric

properties，such as their high absorption coefficients，
balanced long-range electron /hole transport lengths，low
recombination rate，and tunable bandgap． Tremendous
efforts have been made to investigate halide perovskite-
based materials for applications in solar cells，light emit-
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ting diodes，lasers，and other optoelectronic devices［1-5］．
Compared with the traditional dye-sensitized solar cells，
the overall power conversion efficiency of organometal
halide perovskite-based solar cells has rapidly increased，
up to 20． 1%［6］． Some investigations of these materials
are based on directly probing the charge carrier dynam-
ics，such as the carrier lifetime，mobility，and diffusion
length，by using time-resolved photoluminescence and
optical pump-terahertz probes［7-13］． Determining the dy-
namics of the photo-excited carriers in CH3NH3PbI3 films
should provide a deeper understanding of the mechanisms
that give rise to the high performance of hybrid perovs-
kite-based devices．

Ｒecently，a broadband optically controlled terahertz
( THz) device was successfully produced by increasing
the charge carrier density at the CH3NH3PbI3 /Si inter-
face［14］． The efficiency obtained in devices using the
mixed halide perovskite material CH3NH3PbI3-x Clx as
both an absorber and electron transporter was higher than
when using a CH3NH3PbI3 film

［5］; it is thus important to
study CH3NH3PbI3-xClx films with regard to their ultrafast
THz modulation characteristics．

In this study，the ultrafast THz modulation charac-
teristics of organolead halide perovskite films
( CH3NH3PbI3 and CH3NH3PbI3-xClx ) were investigated
on picosecond time scales using time-resolved THz spec-
troscopy． Under photo-excitation，a transient decrease in
the THz transmission could be observed． The mechanism
underpinning this photoconductive ultrafast response was
then determined by measuring the transmission properties
and calculating the carrier density．

Fig． 1 Scanning electron microscope ( SEM ) images of
( a) CH3NH3PbI3 and ( b) CH3NH3PbI3-xClx films． ( c)
Experimental setup for the femtosecond optical pump-
THz probe measurements
图 1 ( a ) CH3NH3PbI3 薄 膜 扫 描 电 镜 图，( b )
CH3NH3PbI3-xClx 薄膜扫描电镜图，( c) 飞秒光泵浦太
赫兹探测装置图

1 Experiments

In our experiment，CH3NH3PbI3 and CH3NH3PbI3-x
Clx thin films were deposited directly onto quartz sub-
strates via solution processing． The CH3NH3PbI3 sample
was prepared by a solvent-induced one-step deposition．
A perovskite solution ( 45 wt% ) was prepared by dissol-
ving CH3NH3I and PbI2 in dimethylformamide，which
was then spin-coated on a quartz substrate． During the
spin-coating process，800 ? L of chlorobenzene was
quickly dropped onto the substrate． The resulting film
( about 300 nm thick) was dried at 100 °C for 15 min． A
scanning electron microscopy ( SEM ) image of the
CH3NH3PbI3 film is shown in Fig． 1 ( a ) ． The
CH3NH3PbI3-xClx film was fabricated by N2-assisted one-
step deposition． The perovskite solution consisting of
CH3NH3I and PbCl2 in dimethylformamide was spin-coa-
ted on a quartz substrate． Subsequently，the film was
treated with a high pressure N2 flow for about 10 s． The
film ( about 300 nm thick) was then dried at 100℃ for
150 min; an SEM image of the CH3NH3PbI3-xClx film is
shown in Fig． 1( b) ．

An optical pump-THz probe spectroscopy system
was used to measure the ultrafast responses of all the
samples，as shown in Fig． 1( c) ． The time-resolved THz
spectroscope was driven by a Ti: sapphire amplifier sys-
tem with a 1 kHz repetition rate and a central wavelength
of 800 nm． The THz pulse，generated by ＜ 110 ＞ orien-
ted ZnTe crystals，was normally incident on the films．
The optical path of the pump and THz beams was con-
trolled by two electronically movable stages． The pulses
were frequency-doubled to 400 nm in a β-BaB2O4 crys-
tal． The pump intensity ( 240 μJ /cm2 ) was used with an
adjustable attenuator． By adjusting the optical path be-
tween the THz beam and the pump beam，ultrafast re-
sponses with various time delays could be measured for
the samples excited by the pump pulse．

2 Ｒesults and discussions

Figure 2( a) shows the normalized power spectra for
THz transmission through the CH3NH3PbI3 film under va-
rious levels of laser irradiance． In general， the THz
transmission power decreased gradually as the laser in-
tensity was increased，dropping to 92% of the original
value at an intensity of 240 μJ /cm2 ． Figure 2( b) shows
the normalized power spectra for THz transmission
through the CH3NH3PbI3-xClx film under various levels of
laser irradiance． Compared with the CH3NH3PbI3 film，
the THz transmission power decreased to 90% of the
original value at the same intensity ( 240 μJ /cm2 ) ．
Figure 3 ( a ) shows the dependence of the amplitude
transmission，averaged over a frequency window ranging
from 0． 2 to 2． 6 THz，as a function of the modulation
beam＇s power． At these photo-excitation intensities，the
transmission power through the CH3NH3PbI3-xClx film is
lower than for the CH3NH3PbI3 film． To evaluate the
modulation performance of the films， the modulation
depth ( MD ) ，defined as the change in the integrated
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Fig． 2 Measured THz waveforms transmitted through
( a) the CH3NH3PbI3 film and ( b) the CH3NH3PbI3-x
Clx film under different photo-excitation powers
图 2 不同光激发强度下( a) CH3NH3PbI3 薄膜太赫
兹波透射谱及( b) CH3NH3PbI3-xClx 薄膜太赫兹波透
射谱

transmitted THz power caused by the photo-excitation in-
tensity，is:

MD =
∫Plaser-off ( ω) dω － ∫Plaser-onω( dω)

∫Plaser-off ( ω) dω
，( 1)

where Plaser-on ( ω) and Plaser-off ( ω) is the transmitted THz
power when the laser is switched on and off，respective-
ly［15-19］． The THz transmission MDs at various optical ex-
citation levels are shown in Fig． 3 ( b) ． The MD of the
CH3NH3PbI3-xClx film is 10% at a pump intensity of 240
μJ /cm2 ． However，the MD of the CH3NH3PbI3 film is
8% under the same conditions． Generally， the
CH3NH3PbI3-xClx film has more advantageous properties
because it can be used as an active all-optical device for
THz waves over a wide frequency range ( 0． 2 ～ 2． 6
THz) ．

The response of the organometal halide perovskite
films under external optical excitation was investigated u-
sing an optically pumped THz probe system． The power
of the pumping beam was modulated with an attenuator．
The THz pulse had a delay with respect to the pump
beam to ensure that the pulse excited the film． The trans-
mitted THz signal decreased when the pump beam inten-
sity reached 240 μJ /cm2 ． The normalized optical pump-
terahertz probe results for the two films reveal differences
in the THz photoconductivity decay dynamics ( Fig． 4 ) ．
Sharp decreases in the THz peak values for the

Fig． 3 ( a) THz power transmission and ( b) modulation
factor for CH3NH3PbI3 and CH3NH3PbI3-xClx films，av-
eraged over a frequency window in the 0． 2 ～ 2． 6 THz
range as a function of the laser intensity
图 3 0． 2 ～ 2． 6 THz 太赫兹波谱范围内 CH3NH3PbI3
薄膜及 CH3NH3PbI3-xClx 薄膜的太赫兹透射强度及调
制因子与激发光强的关系

Fig． 4 Changes in the THz waveform maxima with
photo-excitations for different time delays
图 4 光泵浦时间延时与太赫兹峰值的变化关系

CH3NH3PbI3 and CH3NH3PbI3-x Clx films are observed
and the carrier recombination time response shows almost
a 1 ns rise time for both films，as calculated via a linear
fit ( Fig． 4 ) ． However，the CH3NH3PbI3-xClx film dem-
onstrates a better modulation depth for the THz peak val-
ue compared with the CH3NH3PbI3 film．

To investigate the modulation mechanism in the ter-
ahertz photoconductivity decay dynamics，the frequency-
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dependent equivalent complex conductivity σ( ω) of the
films can be determined from the measured transmission
spectra with:

E( ω)
E0 ( ω)

=
ns + 1

ns + 1 + dZ0σ( ω)
，( 2)

Fig． 5 Effective conductivities ( a-d) and carrier densi-
ties ( e) of the two films after various time delays at 240
μJ /cm2 light irradiance． The calculated CH3NH3PbI3
film as ( a) real and ( b) imaginary and CH3NH3PbI3-x
Clx film ( c) real and ( d) imaginary photoconductivities
图 5 240 μJ /cm2 光激发下不同延时的有效电导率
( a-d) 及载流子浓度( e) ． CH3NH3PbI3 薄膜的电导率
实部( a) 及虚部( b) ，CH3NH3PbI3-x Clx 薄膜的电导率
的实部( c) 及虚部( d)

where ns = 1． 96 is the refractive index of the quartz sub-
strate，Z0 = 377 Ω is the impedance of free space，ω is
the angular frequency of the incident light，and d = 300
nm is the film thickness［20-21］． The real ( σr ( ω) ) and i-

maginary ( σi ( ω) ) parts of the calculated photoconduc-
tivity in the CH3NH3PbI3 film and the CH3NH3PbI3-xClx
film at different time delays are shown in Figs． 5( a-d) ．
Many studies indicate that the Drude-Smith model could
provide a superior fit to both the real and imaginary parts
of the conductivity for many materials［22-23］． The Drude-
Smith model is expressed as:

σ～ ( ω) = Ne2τ /m*

1 － iωτ 1 + c
1 － i[ ]ωτ

， ( 3)

where c is a measure of velocity persistence and its nega-
tive value implies a predominance of backscattering，N is
the carrier density，e is the elementary charge，m* is the
electron effective mass，and τ is the characteristic scat-
tering time． The carrier density of the CH3NH3PbI3 film
increased to N = 5． 28 × 1017 /cm3 with an optical excita-
tion of 240 μJ /cm2，causing the largest change in the
modulation depth ( 8% ) ． However，the carrier density
of the CH3NH3PbI3-x Clx film increased to N = 7． 04 ×
1017 /cm3 with the same optical excitation; this resulted
in a modulation depth change of 10%，as shown in Fig．
5( e) ． The larger crystalline bulk of the CH3NH3PbI3-x
Clx film produces higher carrier densities compared with
the CH3NH3PbI3 film． After photo-excitation，the carrier
density returned to a value close to the original． With a
300 ps time delay，the carrier density of the CH3NH3

PbI3 film decreased to N = 3． 23 × 1017 /cm3 and the mod-
ulation depth decreased by 4． 4% ． When the carrier
density of the CH3NH3PbI3-x Clx film decreased to N =
4. 83 × 1017 /cm3，the modulation depth decreased by
5. 8% ． This decrease in carrier density led to a fall in
the optical conductivity，and thus the THz transmission
returned to the initial state．

3 Conclusions

In summary，we used a direct，noncontact method
to investigate the influence of the optical pump power on
the photo-generated carrier relaxation process． A transi-
ent decrease in the THz transmission on a picosecond ti-
mescale was observed under light excitation． The
CH3NH3PbI3-xClx film showed a better modulation depth
within the same range of photo-excitation intensities than
the CH3NH3PbI3 film． The results show the intrinsic
photophysics of semiconducting organometal halide per-
ovskites，which have applications in high-performance
THz modulators and ultrafast switchable THz photoelec-
tric devices． These materials may also make terahertz fil-
tering and other such applications possible in the future．
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