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Sparse and low-rank abundance estimation with structural information
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Abstract: Abundance estimation ( AE) plays an essential role in the hyperspectral image processing and analysis.
Owing to the simplicity and mathematical tractability, various methods based on the constrained linear regression
are usually developed to estimate abundance matrix. The obvious limitation of these approaches is that the fitness
between the estimated data and ground-truth data does not include the structural information, e. g. row difference
and column difference. In this paper, a novel linear regression algorithm is proposed by jointly adding the multi-
structured information to the traditional linear regression model. And it is employed to modify sparse and low-rank
abundance estimation model to improve estimated accuracy and robustness. Firstly, a new linear regression model
is established by taking into account the structural information. Then, mathematical proof of the new linear regres-
sion method is presented. Afterwards, it is applied to modify the sparse low-rank abundance estimation model. Fi-
nally, Alternating Direction Method of Multipliers( ADMM) technique is adopted to solve the new model. The ex-
perimental results demonstrate that the proposed algorithms can capture structural information and improve the esti-

mated performance on the simulated dataset and the real hyperspectral remote sensing images.

Key words: unmixing, sparse and low rank, structural information, abundance matrix, alternating direction meth-
od of multipliers ( ADMM)
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ble attention due to its wide range of applications inclu-

Introduction ding planetary exploration, precision agriculture, mili-
tary target identification, forest research, target detec-

Hyperspectral remote sensing has gained considera- tion and so on'""). In recent years, it has been widely
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used in environmental monitoring'"'**'.  Hyperspectral

sensors can sample the electromagnetic spectrum in tens
or hundreds of contiguous spectral bands from the visible
to the near-infrared region. However, due to their low
spatial resolution, more than one different materials can
be mixed in a single pixel, which hinders the applica-
tion and development of hyperspectral technology''*'**/
and calls for spectral unmixing. In spectral unmixng,
the spectrum of a mixed pixel is decomposed into a col-
lection of constituent spectra( endmembers) and a set of
corresponding fractions( abundances). However, the i-
dentification of the endmembers is challenging due to
the insufficient spatial resolution and the unavailability
of completely pure pixels in the scene. And an inaccu-
rate endmember leads to unreliable fractional abun-
dance'”?). To avoid the limitation, sparse unmixing as
a promising approach is the focus of this article. Sparse
unmixing is based on the premise hypothesis that: from
the large-scale view of point, the observed spectra can
be expressed as linear combinations of a number of pure
. . [2435]
spectral signatures known in advance . Therefore,
finding the optimal subset of signatures from a large
number of spectral samples to best model the mixed pix-
el in the scene results in a sparse abundance matrix.
The semi-supervised sparse unmixing is termed as
sparse abundance estimation. The objective of abun-
dance estimation is to determine how many and which
endmembers are present in the mixed pixel under study
and to estimate their corresponding abundance. The
sparsity is imposed on abundances by means of €, norm

) However, regularizing the €, item is

regularization
a NP hard optimization problem, which is complex and
difficult to be solved. Reference [ 26 ] has proved that
under the RIP condition, it is reasonable to relax the
€,norm to €, norm. This lays the ground for applying €,
norm to express the sparseness.

Instead of €, norm, the €, norm can improve the

accuracy of abundance matrix estimation'***"’. Refer-
ence [ 28] has argued that €, norm (0 <p <1) is more
effective than the €, norm. Meanwhile, a method that
approximates the €, norm has been put forward in Ref.
[29]. It works more better than employing, norm at
the cost of higher computational complexity. Also,
Refs. [30-31] have proposed various sparse regulariza-
tion item to approximate the €, norm to obtain accurate
abundance. However, they require much more compu-
tational time. On the other hand, in Bayesian schemes,
appropriate sparsity inducing priors have been adopted
for the abundance vectors™*>™'.

The above methods have been based on the prior
knowledge about the spectral domain. From the per-
spective of the spatial domain, Refs. [ 34-35] have
considered that the spectra of homogeneous objects in
space are highly similar, so their corresponding abun-
dance vectors have high correlation. Reference [ 34 ]
has assumed that all pixels belonging to the same win-
dow are correlated, i. e., they are composed of the
same materials, although maybe in different propor-
tions. This property suggests that the abundance matrix
W to be estimated has linearly dependent columns and
thus is either low-rank, or it can be well-approximated

by a low-rank matrix. Alternatively, Ref. [35] has de-
veloped a collaborative deterministic scheme, whereby
the information provided by the neighboring pixels is
taken into account in the abundance estimation of each
single pixel. The method termed as CLSUnSAL uses a
wealth of information stemming from all the pixels of the
examined HIS. To impose joint-sparsity, CLSUnSAL
has applied a €, , norm on the sought abundance ma-
trix, which is then used to penalize a suitably defined
quadratic cost function. Following the spirit to develop
the localized approaches, Ref. [36] has proposed the
use of a 3 x3 square window that slides all over the im-
age. Then, the abundance vector of the central pixel
has been inferred by taking into account the spectral sig-
natures of the adjacent pixels contained in the window.
Based on homogeneous area in local regions'**! and slid-
ing window'* method, Ref. [37] has proposed to
seek for 3*-column abundance matrices which are simul-
taneously sparse and low-rank. According to inverse
theories in signal processing and machine learning liter-
atures " and low-rank matrix estimation tech-
niques , the abundance estimation solved by the al-
ternating directional multiplier method (ADMM) *") has
yielded many advantages over other algorithms.

In all the above abundance estimation algorithms,
they cannot consider the structural information. The Ox-
ford English Dictionary tells that a structure is an ar-
rangement and organization of interrelated elements in a

[4346]

material object or system, or the object or system so or-
ganized ® . Abstract structures include data structures
in computer science and musical form. Types of struc-
ture include a hierarchy (a cascade of one-to-many rela-
tionships) , a network featuring many-to-many links, or
a lattice featuring connections between components that
are neighbors in space*

As far as hyperspectral image is concerned, “struc-
ture” means the pixel-value distance between any group
of points. If the map consists of such distant value, it is
referred to as structural information map. It is quite clear
that each image owns lots of structure information maps.

It inspires that if one image matrix X is the best estima-
tion of ground-truth matrix X, the fitness is not only from

- 2 - 2
— F - F.
I X-X|2 but also from |MX-MX| In
|M X - MX|3., M is the operational matrix which could
F p

extract structural information map, X and X are termed

as original map and MX as well as M X are referred to as
structural information map. The structural information
map is called structural information for short. In fact, the
structural information is firstly used in Ref. [49]. It ap-
plies the row-difference information and column-differ-
ence as structural information to the auto-encoder neural
network to improve the auto-encoding performance. How-
ever, it cannot introduce detailed analysis and explana-
tion. To address the issue further, a novel model with
structural information is proposed for hyperspectral image
unmixing. Firstly, a k X k square sliding window is ex-
tracted. Secondly, the sparse and low rank abundance
estimation model in Ref. [37] is modified through
adding a penalty term which controls the fitness error be-
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tween structural information to estimate k’-column ma-
trix. Finally, the proposed model is solved by ADMM
techniques. Thus, the proposed method is referred to as
the alternating direction sparse and low-rank unmixing al-
gorithm with the structural information ( ADSpLLRU-SI).
In order to compare the performances of the proposed ap-
proach with the competing methods such as ADSpLRU""!
which prevails over CSUnSAL"™! and BiICE"**! methods,
experiments on simulated and real data are performed ex-
tensively.

The rest of this paper is organized as follows. In
Sect. 1, the sparse low-rank abundance estimation algo-
rithms are described. And in nature, it is considered as
a constrained sparse low-rank linear regression. Section 2
elaborates the proposed model and uses mathematical
theory to prove that it has more favorable accuracy than
the traditional method. Moreover, it gives the detailed
procedure for applying ADMM to solve the new model.
Section 3 introduces the experimental results and discus-
sions. Finally, the conclusions are drawn in Sect. 4.

1 Problem formulation

This section will formulate hyperspectral image un-
mixing. To express our work clearly, the notations are
summarized in the Table. 1.

Assume an L-spectral band hyperspectral image
whose pixel being composed of N endmembers. The end-
members dictionary is denoted by 8 =[6,,6,,,6x],
where 9,(i=1, 2, ---,N) stands for the spectral signa-
ture of the i-th endmember. As is shown graphically in
Fig. 1, define a small £ x k sliding square window, which
contains K adjacent pixels (K =%k xk). And, Y =[y,,
¥y s,y ] € RV % including the spectra of the K pixels in
the window as its columns, where v, (m =1,2,---K)
termed as measurement spectra, share the same endmem-
ber dictionary matrix @. The mixing process is modeled
by a linear mixing model ( LMM )

Y=6W+E (D)

The abundances have to obey two constraints,
namely, abundance nonnegativity constraint( ANC) and
the abundance sum-to-one constraint( ASC) , that is

W>0;,1"W=1" . (2)
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Fig. 1  Graphical illustration of the sliding window ap-
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Table 1 Notation Table

x1 #HSX
N number of endmembers
L number of spectral band
k the size of the sliding window
K number of pixels
YeR"K spectra of the pixels
We RV*K abundance matrix
<R endmembers” dictionary
E e RV*K noise matrix
R* k-dimensional Euclidean space
R, k-dimensional non-negative orthant
0 zero matrix
1 ones matrix
X matrix
X vector
lIx1l, nuclear norm of a matrix
HX”l 1 norm of a matrix
p.q" Frobenius norm of a matrix
X' transpose of a matrix
tr(.) the trace of the matrix

As far as sum-to-one constraint is concerned, the
sum-to-one constraint is relaxed as following Ref. [37].
In other words, holding the sparsity and low-rank proper-
ty on the abundance matrix without sum-to-one property,
the problem is formulated by Ref. [37] as follows;

. 1
(P) W = argmanERcny THY —0WH§* + ')’HW”l +
TIWI + 1 (W) - )

where parameters y, 7 manage the trade-off between the
sparsity and rank regularization terms and the data fideli-
ty terms. The non-negativity constraint is denoted by 7

Structural information: The above model motivates
us that if the @W is the best estimation of Y, it is not on-
ly that the original matrix is similar to the ground-truth
matrix but also the structural information of the Y is sup-
posed to be similar to the structural information in the
OW. To express our motivation conveniently, M is the
operational matrix for calculating structural information.
Section IV will present the M in detail. So, the problem
in Eq. 3 can be reformulated as follows :

- . 1
(PRM) : W = argminy, ey {5 [|Y = oW + [ W], +

1
TIWIL + S« YM - owMlf; + 1, (W) | , (4

PRM is used to denote the proposed model. Later,
the advantages over the model in (3) are demonstrated
by the mathematical theory and experiments.

2 The proposed algorithms

This section presents the understandable mathemati-
cal theory to support the novel model. Additionally, it
describes that how to solve the PRM model with the split-
ting strategy of the ADMM"*"/

2.1 Proof the model PRM

This subsection presents a proof that the novel mod-

el is more effective than the old model. Without sparse
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and low-rank constraint, if we guess that W has the W,
then we are implicitly making the guess that E has the

value Y — 0W Assuming that smaller values of E ( meas-
ured by ||. ||, are more plausible than larger values, the

most plausible guess for W is Y — 0W %) To prove the
performance of the model PRM using the theory in Ref.
[50]7, flrstly, the old model in Ref [37] is defined as

(P):W = argming. x| 31 Y = W[ + ]| W],
+ 1y (W)} , (5)

Secondly, the proposed model is represented as

(PRM) : W = argminy gy | ||Y oWl +v[wl, +

1
| wl, +7<\|YM—0WM||2F +I, (W)}, (6)

Thirdly, since the k and M are constant, a model
which is equwdlent to Eq. 5 is formuldted as follows.

H Y - oWl +vllwl,

(P2) : W = argminy _ gy |

1
. +7KHMIIiHY—0W||§ (Wi (D)

Fourthly, using the theory: [AB|, < [A],
||B||F[51] , we have .
lym - owM|; < MY — oWl - (8)

Then, add %HY—aWHi wy|l Wl Wi, +1, (W)

to both sides of the inequality in Eq. 8, the following ine-
quality is obtained

%HY—0WH2, +yHW||1 +r| W, + LKHYM—()WMH%

+I, (W) < HY oW +y Wi, + 7w, +3K

||MH2F||Y—0WH2F+1R+(W) NC)

Finally, observing the inequality in Eq. 9, we found
that the left side is an objective function of PRM model,
and the other side is an objective function of P2 model.
Hence, considering the theory in Ref. [50], we con-
clude that the estimated W solved from PRM model in
Eq. 6 could be more accurate than from P2 model in Eq.
7. And taking into account the fact that the P model in
Eq.5 is equivalent to P2 model in Eq.7, we could draw
the conclusion that the estimated W solved from PRM
model in Eq. 6 could be more accurate than from P model
in Eq.5. More interestingly, if ¥ =W or x =0, PRM
model degrades to P model.

Proof finished.
2.2 Alternating direction method of multipliers for
the novel unmixing model

In this section, ADMM techniques are explored to
optimize PRM model.

Firstly, its equivalent ADMM format is reformulated
as follows.

- . 1
(PRMZ) W= argminy s s.s,s: % ? || Y _21 Hi‘ +y HZZ ||1
1
erl s+ L= 1 (30
S.T.3, -9W =0,3, -W=0,3, -W=0,3, - W =
0,3, - WM =0 ., (10)

where 3,3,3.3, 3. of proper dimensions are the auxilia-
ry matrix variables (similar to Ref. [37]).

Secondly, the corresponding Augmented Lagrangian
Function (ALF) is given as follows.

L(W, 2222;242; IIY 35+ v I3+ 7

HZ% « T ?K HYM_ZS ”i + IR+ (%) + tr(zl (2 -
OW)) +1r(2; (3 - W)) +1r(z; (35 - W)) +1r(z (3,
=W)) (25 (35 - OWM)) + B (13, - oWl +

1= -wii + Iz -wik + I3 -wIE + o«
|35 - owMl) . (1)
where the L x K matrices Z, ,Z, ,and the N x K matrices
Z,,Z,,Z, are the Lagrange multipliers and u >0 is a
positive penalty parameter.

Thirdly, the ADMM proceeds by minimizing L( W,
3,,3,,%.,%,,3) sequentially, each time with respect
to a single matrix variable, keeping the remaining varia-
bles at their latest values. The dual variables are also up-
dated via a gradient ascend step at the end of each alter-
nating minimization cycle.

To elaborate the steps of the ADMM, the optimiza-
tion with respect to W is given as following

W' = dlyap(A,B,C") , (12)

where

J'=0"3 +3, +3, +3, +k0'IM';

H =0"7Z +Z +Z. +Z, +x0'Z:M';

F=(0"0+31,)]"

A= -«kF0'9;B=M"M;C'=F(H +]');
and dlyap (. ) denotes the solution X in sylvester equa-
tion as the form AXB - X +C =0 ; t denotes the t-th
iteration.

Fourthly, the optimization with respect to remaining
variables such as 3, (i=1,2,3,4,5) and Z,(j =1,2,3,
4,5) is performed as Ref. [37].

At the end, the convergent conditions are set as fol-
lowing Ref. [47].

To represent the proposed method clearly, the pro-
posed algorithm is termed as the alternating direction
sparse and low-rank unmixing algorithm with structural
information ( ADSpLRU-SI). And it is summarized in
Algorithm. 1, where the SHR(.) and SVT(.) are de-
scribed in more detail by Ref. [37].

3 Experimental results and discussion

This section introduces experimental tests performed
both on simulated and real data to reveal the performance
of the proposed ADSpLLRU-SI algorithms. Our techniques
are compared with state-of-the art unmixing algorithms,
namely, ADSpLRU'Y'| CSUnSAL'™' and Bi-ICE'*’,
The computational time of all the tested algorithms is giv-
en in Table 2. The experiment is carried out on the com-
puter with 4CPUs and 32G RAM to get the total time for
unmixing the 9 pixels. Each experiment is run for 10
times. The result is calculated by (total time)/10. Ta-
ble 2 shows that the ADSpLRU-SI costs more time than
other methods since the abundance is estimated by invol-
ving the structural information. Next, the parameters’
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Table 1 Algorithm I
&1 HiEI

Algorithm 1; The proposed ADSpLRU-SI

Input:Y,0

Set :

t=0; M;F=(0"0+31,) ';A= —kF0" 0;B=M"M;
Initialize: W°, 37,39 ,39,30,39,27,29,25 .2 73
Repeat ;

J'=0"3 +3) +34 + 3, + k0" I M";

H =0"Z' +Z, +Z\ +Z} +x0"Z.M";
F=(0"0+31,) "',

C'=F(H' +J") ;W' =dlyap(A,B,C");

+ 1 + + 1 +
B (VW = Z0) 3 = (Y W =23
ZEH :SHRY(IU,WH] _le);zgﬂ :SVTT(,LLWHI _Zg);

S =g, (W - Z) 38 = Z5 -k (uoW T M+ 35
3 =Z oW £ 37 (i=1,2,3,4)

Until ; convergence

Output; W=W'*!

setting and performance evaluation criteria are given. To
unveil the advantages of the work over other methods,
four different types of experiments on synthetic data are
executed. Meanwhile, one experimental test is performed
on real hyperspectral image. Since Ref. [37] has dem-
onstrated that ADSpLRU prevails over CSUnSAL™' and
Bi-ICE"® methods, we only compare the proposed meth-
od with ADSpLRU on the rest of experiments.

Table 2 Running time comparison

x2 EBETHELLER
Algorithm CSUnSAL ADSpLRU  ADSpLRUsl Bi-ICE
Costing time 0.12 ns 0.06 ns 0.2 ns 0.42 ns

3.1 The structural matrix for extracting multiple-
structure information

To extract structural information, the structural ma-
trix is defined as M, = [m, ,m, ,--- ,m, ] e R*** | where
m, is a column vector and composed of —1 and 1. The
matrix M, the
(SSM)”, can extract the structure information of the o-
riginal image. To illustrate it clearly, we give an example
in Fig. 2(a). In Fig. 2(a), I is an image vector ( ob-
tained from converting the K = 2 X2 image to a vector) ,
M, =[m, ,m,, ,m,]| is a single-structured matrix
(SSM) , where m, =[0,0,1, -1]", m, =[0,1, -1,
01", my=[1,0,-1,01",m, =[0, -1,0,1]". The
structural information(SI) is obtained by I x M. Figure
2(a) elaborates that the elements in SI denote the dis-
tance between any pair of pixels in image I. And we find

so called “ single structure matrix

Table 3 Parameters Setting
R3 BB

that the number of column-vector could reach 2* = 16.
Meanwhile, each single-structure matrix (SSM) is com-
posed of four column-vectors. It is obviously found that
there are various SSMs which is composed of —1 and +
1. In order to use these various structural information, a
number of SSMs are summed up to form a new matrix
called a multi-structured matrix (MSM ). As shown in
Fig. 2(b), the multi-structured information is defined as
follows :

SI:%X (SI, +SI, + - +SI,) =Ix (3!, M,)/q

. (13)
Thus, it is quite clear that the MSM denoted by ma-

trix M is formulated as
M= (X M;)/q :

where ¢ denotes the number of structural matrices.

(14)

EAEAENEA s

! \

‘ S ojof1]o0 ‘ \
pl I le p3]p4| *lo|1|o0]|-1]| = lPrPAlPZ'pzlPl'PzIPrPZI
1[-1[-1|0 \N
-110]0]1
—
M
(2)
I M=(M,+M,. M,)/q

(=] [(5]°

[=] [SL ] r[SI=(SL+SL.. .SLyq|

= EJ-

®)

Fig.2  Structural matrix. (a) Single-structure matrix M (b)
Multi-structured matrix M
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In this article, K =3 x 3 is fixed, the proposed
method with structural information is termed as ADSpL-
RU-SI. We use ADSpLRU-SI-q means that ADSpLLRU-SI
uses the matrix M composed of q SSMs.

3.2 Setting of parameters and performance evalua-
tion criteria

In the matter of parameters, y denotes the sparsity
parameter in all examined algorithms which controls the
convergent behavior of ADSpLRU-SI and ADSpLRU,
takes positive values. In all our experiments, u =0.01 is
fixed. The low-rank parameter is represented by 7. And
x manages the structural information. Parameters y, 7,
and k are fined tuned with 10 different values, as shown

in Tabel 3.

Algorithm b% T I K
ADSpLRU 0,10°[ -10, -9,---,-2]  0,10"[ -10, -9,---, -2] 0.01 Not available
ADSpLRUSI 0,10 -10, -9,---,-2] 0,10 -10, -9,---, -2] 0.01 0,10°[ -10, -9,---, -2]
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To evaluate the performance of the proposed algo-
rithms and the competing one, the signal-to-reconstruc-
tion error ( SRE) is adopted to measure the power be-
tween the signal and error'”’ | which is defined as fol-
lows

n 2

SRE = 10 log, Z i lwi . (15)
Ziilw - w3

where n stands for the total number of the pixels, w, is

the actual abundance vector of the i-th pixel, and w,’ is
the estimated one.

SRE is used instead of the classical root mean
square error ( RMSE) because Ref. [53] has provided
the suggestion that SRE gives more information regarding
the power of the error in relation with the power of the
signal. The higher the SRE (dB), the better the unmix-
ing performance'™’ .

3.3 Experiments on simulated data

For the synthetic data experiments, we use the
spectral library randomly selected from the United States
Geological Survey (USGS) digital spectral library'™
which has 224 spectral bands uniformly ranging from 0. 4
~2.5 pm, and contains 498 different spectral signatures
of endmembers. In this work, the endmembers’ diction-
ary @ is constructed by selecting randomly the N end-
members from the USGS library. Then, given 0 and ac-
tual abundance matrix W and noise E, the spectra are
generated by utilizing the LMM in Eq. (1).

— ADSpLRU
025 . ADSpLRU-SI-1
-- ADSpLRU-SI-4
e ADSPLRU-SI-40
ADSpLRU-SI-80
g 0.15%
R —
0.05
00 100 200 300 400 500 600 700 800 900 1000

Iteration

Fig.3 Convergent behavior

3 stk

1) Convergent behavior of ADSpLRU-SI and other
competing algorithms. In order to reveal the convergent
behavior of the proposed algorithm, firstly, a rank 2 and
sparsity level 20% abundance matrix We R"** (N = 50
endmembers, K = 9 pixels) is generated. Secondly,
spectra Y € R"** (L =224 bands, K =9 pixels) is de-
rived by adding Gaussian noise( e. g. SNR = 28 dB) to
the LMM in Eq. (1). Thirdly, the abundance matrix is
estimated by four different algorithms namely ADSpLRU
and ADSpLRU-SI-1 and ADSpLRU-SI4 and ADSpLRU-
SI-40 and ADSpLRU-SI-80. To compare the behavior
with the method in Ref. [37], normalized mean squared
estimation error (NMSE) defined in Ref. [37] is used
to evaluate their convergent property.

1., Iwi-w,

2
NMSE(¢) =—37_ L (16)
p WL

where W, is the actual matrix of the i-th realizations, W;

i

is the estimated matrix of the W, at the ¢-th iteration. In
nature, the NMSE is equivalent to RMSE. Namely, if
W, is constant, the NMSE equals to RMSE.

In this work, a number of 10 independent realiza-
tions is run for each experiment and the average NMSE is
used to measure the convergence. The convergent prop-
erty is illustrated in Fig. 3 clearly; ADSpLRU-SI-1 a-
chieves slightly better estimation accuracy than ADSpL-
RU in terms of NMSE. It results from that only one struc-
ture is employed by ADSpLRU-SI-1. Next, ADSpLRU-
SI4 reaches a smaller value than ADSpLRU-SI-1 and
ADSpLRU in terms of NMSE. It stems from that ADSpL-
RU-SI4 uses four structures. Further, the ADSpLRU-SI-
40 could obtain smaller NMSE than ADSpLRU and AD-
SpLRU-SI-1 and ADSpLRU-SI-4. Moreover, ADSpLRU-
SI-80 shows higher estimation accuracy than other meth-
ods in terms of NMSE. It illustrates that the greater the
amount of structural information, the better the conver-
gence. It is noteworthy that the better convergence of
ADSpLRU-SI is at the cost of much more time than the
ADSpLRU algorithm.

2) A toy example: To highlights the significance of
the structural information, we take the row-difference
structures and column-difference structures for example.
The procedure is designed as following steps: firstly, a N
x K (where N =50 and K =9) abundance W with rank
2 and sparsity level 20% is generated and illustrated in
Fig.4(a). And Fig. 4(b) illustrated a ground-truth a-
bundance W with rank 2 and sparsity level 10% . The L
x K spectra Y is obtained as the LMM in Eq. (1).
Then, the abundance matrix ( sparsity level 20% ) esti-
mated by ADSpLRU is shown in Fig. 4(c¢). And the a-
bundance ( sparsity level 20% ) resulted from ADSpL-
RU-SI is illustrated in Fig. 4(e). Similarly, Fig. 4(d)
illustrates the estimated abundance matrix ( sparsity level
10% ) obtained by ADSpLRU. Figure 4 (f) displays the
abundance ( sparsity level 10% ) estimated by ADSpL-
RU-SI. Looking into the Fig. 4, we could observe that
most parts of the estimated abundance from ADSpLRU-SI
and ADSpLRU share the common abundance values ex-
cept for the circled area. The circled area in abundance
maps displays that the abundance matrix estimated by
ADSpLRU-SI is closer to the actual abundance than the
abundance estimated from ADSpLRU method. In conclu-
sion, as a result of the structural information, ADSpL-
RU-SI improve the performance in sparse low-rank abun-
dance estimation.

3) The key role of the parameter k: The parameters
v,7 control the imposition of sparsity and low-rankness
which has been discussed in Ref. [37]. This experi-
ment mainly explores the parameter xk which control the
structural information as constraint counterparts. To un-
veil dependency of the optimal set of k values, row-
difference map as the structural information is used to ex-
periment. Nine types of abundance matrices reflect dif-
ferent row-difference information of the matrix with rank
2 and sparsity level 10% . A number of 10 independent
realizations is run for each of the nine experiments, and
the average NMSE is demonstrated as function of k. As
shown in Fig. 5, with the amplitudes of the row-differ-
ence map increasing, the parameter k could play more
effective influence on the estimation performance. On the
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Fig.4 Toy experiments, (a) Ground-truth abundance W
(sparsity 20% ), (b) Ground-truth abundance W ( sparsity
10% ), (c) Abundance W estimated by ADSpLRU ( sparsity
20% ), (d) Abundance W estimated by ADSpLRU ( sparsity
10% ), (e)Abundance W estimated by ADSpLRU-SI ( spar-
sity 20% ), (f) Abundance W estimated by ADSpLRU-SI
(‘sparsity 10% )

K4 DiESR, (a) WBLE R 20% EE W, (b) b
JE5 10% K EAE W, () di ADSpLRU 803544 1 (a) B2
A, (d) th ADSpLRU 11 (b) AYZER, (e) i ADSpLRU-SI
flivt(a) 4524, () fhi ADSpLRU-SI it (b) 14

contrary, if the row-difference amplitude is too small, it
is easy for the k playing a negative impact on the estima-
tion performance. Considering the equations in algorithm
1, at the condition of @M becoming smaller, the M
plays less influence on the abundance matrix estimation.
And the k could make the solution escaping away from
the convergent area easily. In conclusion, provided the
amplitude of the row-difference map in the abundance
matrix is not too small, the ADSpLRU-SI could achieve
better performance than ADSpLRU.

Fig. 5 Experiments of the parameter x, (a) initial abundance
matrix, (b) NMSE function of the parameter x

KIS KTk W52, (a) FIUGFREFEM (b) XIARTT
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4) Robustness to noise: In this experiment we aim
at exhibiting the robustness of the proposed algorithms to
white and correlated noise corruption. To this end, we

stick with a specific simultaneously sparse and low-rank
abundance matrix W of sparsity level 20% and rank 3.
Based on this W, K =9 linearly mixed pixels are genera-
ted, in the same way as described above. Then, depen-
ding on the case, white or colored Gaussian noise con-
taminates the data. 16 SNR values are considered ran-
ging from 10 to 40 dB, while 10 realizations are run for
each SNR value, and the mean of SRE metrics is calcu-
lated.

White Gaussian Noise: The SRE resulting from the
proposed ADSpLRU-SI ( ADSpLRU-SI-1, ADSpLRU-SI-
4, ADSpLRU-SI-40, ADSpLRU-SI -80) and the AD-
SpLRU are shown in the Fig. 6(a). In all the examined
SNR values, ADSpLLRU-SI-80 obtains the most accurate
results comparing with ADSpLRU. Additionally, the AD-
SpLRU-SI with a larger number of single structural matri-
ces performs better than ADSpLRU. In conclusion, the
proposed methods are more robust to the majority of white
noise than others.

. Colored Gaussian Noise: Actually, in real hyper-
spectral images the noise that corrupts the data is rather
structured than white. Thus, to assess the behavior of the
proposed methods in such realistic conditions, we simu-
late correlated Gaussian noise that adds up to the linearly
mixed pixels. Figure 6 (b) illustrates the effectiveness of
the tested algorithms in terms of SRE, for different SNR
values. It is clearly seen that ADSpLLRU-SI-80 achieves
superior results to other algorithms in all the examined
SNR values. Additionally, it is noted that ADSpLRU-SI-
1 performs slightly better than ADSpLRU. As a result,
the robustness of our proposed methods is also corrobora-
ted in the presence of correlated noise with different mag-
nitude.

4.2 3.6 ~~ADSpLRU
—+~ADSpLRU-SI-1
4.0 3.4 +A[)SELRU—S[—4
J ADSpLRU-SI-40
3.8 3.2| ~~ADSpLRU-SI-80
3.6 30
2 34
% 2 28
32 «@
2.6
3.0
2.8 24
2.6 22

10 15 20 25 30 35 40 2'q0 15 20 25 30 35 40
SNR SNR

(a) (b)

Fig.6 Robustness, (a) white noise, (b) colored noise
K6 Mg, (a) M, (b) BabE

3.4 Experiment on real data

This section illustrates the performance of the pro-
posed algorithms when applied on a real hyperspectral
image. The hyperspectral scene under examination is
from the Urban datasets'™'. There are 307 x 307 pixels,
each of which corresponds to a 3 x3 m” area. In this im-
age, there are 210 wavelengths ranging from 400 nm to
2500 nm, resulting in a spectral resolution of 10 nm.
After the channels 1 ~4, 76, 87, 101 ~111, 136 ~153
and 198 ~ 210 are removed (due to dense water vapor
and atmospheric effects) , we remain 162 channels ( this
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is a common preprocess for hyperspectral unmixing analy-
ses)™! . This scene consists of six different species,
namely Asphalt, Grass, Tree, Roof, Metal, Dirt. In or-
der to assess the effectiveness of the proposed algorithms,
the experiment is carried out on the 50 x50 sub-window
in hyperspectral image.

The results are shown in Fig. 7. Figure 7(a) illus-
trates the ground-truth abundance of roof component in
the sub-window. Figure 7(b) shows the estimated abun-
dance which is obtained by the ADSpLRU method. The
abundance which is estimated by ADSpLRU-SI algorithm
with one structural information ( ADSpLRU-SI-1) is dis-
played in Fig. 7(c). Figure 7(d) illustrates the abun-
dance estimated by ADSpLRU-SI-4. The abundances de-
rived from ADSpLRU-SI-40 and ADSpLRU-SI-80 are
shown in Fig. 7(e) and (f) respectively. From a care-
ful visual inspection of the generated maps, the estimated
abundances from the methods share many common val-
ues, except for the ellipse area. Focusing on the ellipse
region, we can see that the abundances obtained ADSpL-
RU-SI-1and ADSpLRU-SI4 present patterns that are
slightly closer to the ground-truth abundance in Fig. 7
(a) than abundance obtained by ADSpLRU. The little
effectiveness results from a small number of structural in-
formation which is used by the ADSpLRU-SI-1 and AD-
SpLRU-SI4. Looking into Fig. 7(e), we find that the
abundance obtained by ADSpLLRU-SI-40 is much closer
to the ground-truth data than by these methods ( ADSpL-
RU, ADSpLRU-SI-1 and ADSpLRU-SI4).

Compared with ADSpLRU-SI-40, the ADSpLLRU-SI-
80 obtains the better performance as shown in Fig. 7
(f). This is due to the fact that 80-strucured information
brings more effectiveness on abundance estimation than
40-strutured information. Figure 8 shows the SRE (dB)
results achieved by the above methods. It suggests that
the proposed algorithm ADSpLRU-SI achieves higher es-
timation accuracy than ADSpLRU.

In conclusion, ADSpLRU-SI could obtain more ac-
curate estimation abundance than ADSpLRU. Further,
the above experiments have unveiled the dependency that
a large amount of SSMs applied in ADSpLRU-SI could a-
chieve higher estimation accuracy than a small amount of

SSMs employed in ADSpLLRU-SI.
4 Conclusion and future direction

In this paper, a novel linear constrained regression
model is put forward by adding the multi-structured infor-
mation to the traditional linear regression model. Moreo-
ver, the mathematical theory is employed to prove that
the new model can reach more favorable accuracy than
the old one. This proof suggests that such methods could
be popularized and applied to other related fields. The
novel model is used to estimate the sparse and low-rank
abundance matrix for spectral unmixing. However, when
the novel model is solved by the ADMM techniques, the
structural information brings challenges to handling the
optimization with respect to abundance matrix. Faced
with the challenges, the article discovers that sylvester e-
quation opens up a way to easily solve the abundance
matrix. In the field of the sparse low-rank abundance
matrix estimation, the proposed algorithm is termed as
the alternating direction sparse and low-rank unmixing al-

20 30 40 50 . 0 20 30 40 50
(a) ()

20 30 40 50 %1020 30 40 30
(c) ()

50 )
20 30 40 50 10 20 30 40 50
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Fig.7 Abundance map for roof. (a) Original Abun-
dance, (b) Abundance obtained from ADSpLRU, (c)
Abundance obtained from ADSpLRU-SI-1, (d) Abun-
dance obtained from ADSpLRU-SI4, (e) Abundance
obtained from ADSpLRU-SI-40, (f) Abundance ob-
tained from ADSpLRU-SI-80
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gorithm with structural information ( ADSpLRU-SI). The
comparisons between ADSpLRU-SI and ADSpLRU indi-
cate that the proposed algorithm by adding a large num-
ber of multi-structured information, can improve the re-
gression performance, keep more structural information,
improve the accuracy of abundance estimation, speed up
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the convergent steps and enhance the robustness to
noise. Since the multi-structured matrix plays an impor-
tant role in unmixing, how to search the best structural
matrix will be the future research work. Moreover, since
the performance is influenced easily by parameters which
control sparse and low-rank and structural information
terms, the future researches would be carried out on the
adaptive parameters selection.
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