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Abstract: The LaAlO,/SrTiO, heterointerface has been discovered to show two-dimensional interfacial conductivity
and other intriguing emergent phenomena. Its interfacial conductivity was mainly characterized by electric methods
previously. Here the authors present for the first time that scattering-type scanning near-field optical microscopy ( s-

SNOM) can be employed to spatially image the conductivity of the buried LaAlO,/SrTiO, interface, providing a

new means to study the physics of transition metal oxide heterointerface systems.

Key words: transition metal oxide heterointerface, LaAlO,/SrTiO,, interfacial conductivity, s-SNOM

PACS: 73.90. +f, 78.67.-n, 81.07.-b

LaAlOQ, /SrTiO, 7S M H I35 1%

[ A X S L
(1. PR A 2
2. IR AACEI R B

AT, FHRA?,
AR R BE ) SRR [ R S =
i?bfﬂﬁt@ﬂi@%%%&%ﬁ AIE 230026,

:‘EH&‘#I,Z, %%%172,

LA 230026,

§ kit

3. EEMM KA E R KPR, EE M HimE 92093)

FE . H /KR (LaALO,/SITIO, ) 7 R R EH L I EH =

R MEANEM—LrENE RAL

1 S BT, LaAlO,/SiTiO, %}ﬁﬁ?ﬁﬁ’v%%‘Té*ci%%ﬂ%ﬁﬁi%%ﬁ%i#ﬁi‘%ﬁ ® B AR R AR AR

W FE RKE (s-SNOM) *F LaAlO,/SrTiO, Rt & B M 3k

ﬁ@ﬁ‘?é’]%fifﬂ%ﬁf T =/ ETH T
x # 1A

hE 4 ES.0484.1;0484.4 +11 XHERERIRAD . A

Introduction

The coupling of multiple degrees of freedom and the
broken symmetries faciliate important fundamental phe-
nomena and promising applications in transition metal ox-

ide heterointerfaces' . As a prototypical example, two-
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dimensional (2D) electron system at the LaAlO,/SrTiO,
(LAO/STO) heterointerface exhlblts remarkable proper-

26 and

ties including superconducthlty , magnetism
Rashba spin-orbit coupling'”®’ since the original discov-
ery at 2004, Useful device applications, such as pho-

todetectors'™' | gas sensor'™’ and spintronic de-
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vices! """ have also been reported. The intriguing phys-

ics and applications of LAO/STO interface mostly origi-
nate from the nature of 2D conductivity when the LAO
thickness (d) exceeds a critical value (d =4 unit cells
(uc))!. This interfacial conductivity was typically
characterized by the electric transport method > %"
which usually requires sophisticated electrode fabrication.

Scattering-type scanning near-field optical microsco-
py (s-SNOM) , the antenna based nanoscope with optical
resolution beyond the diffraction limit, may provide the
alternative and more convenient method for local optical
or electric property characterization'®®’. Briefly, the
scattered near-field signals detected by s-SNOM are
closely related to permittivities of the materials''® *'?'
and therefore can be used to discriminate between con-
ducting and insulating behaviors considering their differ-
ent dielectric properties. Utilizing this virtue, pioneering
works have been demonstrated in nano-optical character-
ization of the carrier’ s spatial distribution of a silicon-
based nanodevice' ' and the insulator-to-metal transition
of VO, thin films™*'. However, direct detecting of tran-
sition metal oxide heterointerfaces via s-SNOM is rarely
reported. Here we show that the non-invasive s-SNOM
technique, can indeed be employed to effectively image
the electric properties of the buried interface of LAO/
STO heterostructure in real space.

1 Sample preparation

In the experiment, we fabricated the 3 pm by 3 pwm
LAO/STO periodic structure as shown in Fig. 1. LAO
films were deposited on atomically flat STO substrates

with TiO, termination by laser molecular beam epitax-

y 2123 To obtain such structure, we first applied a

standard UV lithography technique'®’ to pattern the
TiO,-terminated STO substrate into the 3 pm by 3 pwm
periodic configuration( Fig. 1(a) ) ; next, 3 nm thick a-
morphous LAO (a-LAO) films were deposited in an oxy-
gen pressure of 2 x 10” mbar at room temperature ( Fig.
1(b)); finally, after a lift-off step to remove the resist
(Fig. 1(c¢)), LAO films were deposited at 700°C with
an oxygen pressure of 1 x 10* mbar and the thickness
was monitored in situ by reflection high-energy electron
diffraction (RHEED) intensity oscillations, the epitaxial
LAO films were crystalline on the bare STO surface but
amorphous on the a-LAO layer and the height difference
between amorphous and crystalline LAO films should be
kept constant ( ~ 3 nm, the thickness of a-LAO deposi-
ted in the prior step) (Fig. 1(d))"® . This results in
the alternating amorphous and crystalline LAO films on
the TiO,-terminated STO substrate, a typical scanning e-
lectron microscope ( SEM ) image of such structure is
shown in Fig. 1(e), while Fig. 1(f) illustrates the s-
SNOM measurement of such LAO/STO configuration.
We fabricated two kinds of representative LAO/STO
samples with different thickness in terms of ¢-LAO films
the sample with 2uc ¢-LAO films is referred to as Sample
A and that with 6uc ¢-LAO films is referred to as Sample
B. Fig. 2(a) and 2(b) show the RHEED intensity os-
cillations of Sample A and Sample B during the ¢-LAO
films growth, respectively. We also characterized the in-
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Fig.1 (a~d) Illustration of the fabrication process: (a) li-
thography to produce periodic resist stripes on TiO,-terminated
STO substrate; (b) deposition of amorphous LAO film at room
temperature; (c) a lift-off step to remove the resist; (d) depo-
sition of LAO film at 700C. (e) Scanning electron micrograph
of the final LAO/STO structure. (f) Schematic of the LAO/
STO configuration for s-SNOM measurement
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terfacial conductivity of a-LAO/STO, 2uc ¢-LAO/STO
and 6uc ¢c-LAO/STO. The former two is quite insulating
with resistivity beyond the measurement limit, which is
consistent with the results reported elsewhere'”’’ | while
the latter one is metallic as shown in Fig. 2(c¢). There-
fore, for Sample A, the interfaces underneath a-LLAO and
¢-LAO films are both insulating; while for Sample B, pe-
riodic insulating/conducting regions are formed at the in-
terfaces underneath a-LAO/c-LAO films, which enables
us to compare the s-SNOM signals of insulating a-LAO
region with that of ¢c-LAO region by subsequent s-SNOM
detection, in order to determine the interfacial conductiv-

ity of ¢c-LAO/STO.
2 Measurements and results

The s-SNOM measurement was performed at 10. 532
pm ( corresponding to ~950 ¢cm™ ) with the AFM tap-
ping amplitude of 60 nm. In order to subtract the back-
ground signal, the scattered s-SNOM signal was demodu-
lated at the 3" harmonic of the tip-tapping frequency ~
260 kHZ. Considering that the effective longitude pro-
bing depth amounts to tens of nanometers for s-SNOM
measurement >*) | and the LAO/STO interface is very
close to the surface ( ~2.3 nm for 6uc LAO on STO) ,
s-SNOM should be sensitive to the local conductivity
property at the LAO/STO interfaces. Note that our nano-
imaging experiments were performed at the frequency far
away from the LAO/STO phonon resonances ( Fig.
3) %) therefore the s-SNOM signal can be predomi-
nantly related to the electronic properties of the sample.
Simultaneously recorded s-SNOM images and AFM topog-
raphy of Sample A and B are shown in Fig. 4. The a-



536 ahh 5 2 K i) 36 #

Intensity/a.u.
Intensity/a.u.

0 100 200 300 400
Time/s

(b)

6uc c-LAO/STO

0 100 200 300
T/K

(0
Fig.2 (a,b) RHEED oscillations for the 2uc (a) and 6uc
(b) c¢-LAO overlayers grown on the patterned STO sub-
strates. (c) The resistivity of the 6uc ¢c-LAO/STO interface
as a function of the temperature
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LAO regions (high) and ¢-LAO ones (low) can be dis-
criminated due to the topographic difference ( Figs. 4(a)
and 4(b) ). As shown in Fig. 4(c¢), the near-field am-
plitude of the a-LAO is slightly higher than that of the c-
LAO in Sample A (2uc ¢-LAO). Since both the c-LAO/
STO and a-LAO/STO interfaces are insulating in the case
of Sample A, the difference in the near-field amplitude
may originate from the tiny discrepancy in permittivities
of the a-LLAO and ¢-LAO films due to their different crys-
tallinity and thickness*'**'. Fig. 4(e) reveals the line
profiles of AFM topography and near-field amplitude
taken along the dashed line in Figs. 4(a) and 4(c) for
Sample A, which indicates that the a-LLAO region is ~3
nm higher than the ¢-LAO region as expected and the
normalized near-field amplitude of the a-LAO region is a-
bout 10% higher than that of the ¢-LAO region.

Despite the small near-field signal difference in
Sample A, more significant near-field contrast between a-
LAO and c¢-LAO was observed in Sample B (6uc c-
LAO, Fig. 4(d) ). The detailed line profiles of AFM to-
pography and near-field amplitude taken along the
dashed line in Figs. 4(b) and 4(d) for Sample B shown
in Fig. 4(f) display that the a-LLAO is also ~3 nm high-
er than the ¢-LAO, similar as that in Sample A; while
the normalized near-field amplitude of the a-LAO region
is about 20% lower than that of the c¢-LAO region, in
sharp contrast to that in Sample A. Since the near-field
signal is positively related to the permittivity Re
(&)"®2 2] the near-field signal contrast of Sample A
(Fig. 4(b)), as well as the corresponding line profile
(Fig. 4(e) ), implies that the a-1LAO/STO structure has
a slightly larger permittivity than the 2uc ¢-LAO/STO
structure, whereas for Sample B (Figs. 4 (d) and 4
(f) ), the permittivity Re(&) of a-LAO/STO structure is
much smaller than that of 6uc ¢-LAO/STO structure.
Considering that the 6uc ¢-LAO/STO interface is con-
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Fig.3 (a,b) Nano-FTIR spectra of a-LAO (bule) and c-
LAO (red) regions for Sample A (a) and Sample B (b).
(¢) Nano-FTIR spectra of ¢-LAO region (red) and bare
STO surface (black) for an 6uc c-LAO/STO sample. All
the spectra are normalized to that of gold

K13 (a,b) Hdh A (a) FIFERL B (b) A& LAO (HE
2) FLERL i LAO(ZL65 ) X B 1) 44 oK 43 B {8 FEL AR 46 21 4
. (¢) 6uc c-LAO/STO FE it (15L& LAO X (£L5) Fil
BREENY STO RN (B €4) (Y 44K 3 FRAeE HL it A8 e 21 A1
PITA R (5 5 — e 3 4 1

ducting in Sample B, in contrast to that in Sample A,
the influence on the permittivity Re(&) of the overlayer
(a-LAO or ¢c-LAO) may be overwhelmed by that of the
interfacial conductivity. Therefore, one can qualitatively
discriminate the interfacial conductivity of LAO/STO in
real space by the near-field signal contrast.

3 Conclusion

In conclusion, we have demonstrated for the first
time that the s-SNOM serves as a non-invasive optical
technique to effectively probe the conductivity of the bur-
ied LAO/STO heterointerface with high spatial resolution
in real space. This approach is expected to be powerful
to image the local electric properties of buried interfaces
of a spectrum of transition metal oxide heterostructures.
Moreover, further developments of s-SNOM technique
will enable the characterization of the heterointerfaces at
cryogenic temperature and compatible with high magnetic
field ™', which may provide further insight into the un-
derlying physics.
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