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Infrared image reconstruction based on compressed
sensing and infrared rosette scanning
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Abstract . Infrared (IR) sub-imaging guidance technique, which combines the single detector and optical scanning
device, is a transition from point-source detection technique to imaging guidance technique. Infrared rosette scan
sub-imaging system (IRSSIS) is a class of sub-imaging guidance system. The IRSSIS samples part data of the
field of view (FOV) according to a specific pattern and obtains a sub-image including the position information of
targets. Compressive imaging in the IRSSIS was studied inspired by the single pixel camera. Compressed sensing
(CS) will help to reconstruct IR image in the condition of much fewer samples. The key problem of CS applied to
the IRSSIS is the measurement matrix construction. While random measurement matrix has been studied intensive-
ly, it is hard to implement. A simple deterministic measurement matrix was proposed for the IRSSIS. Further-
more, a fast and effective recovery algorithm, optimized subspace pursuit algorithm ( OSP) , was proposed. Simu-
lation results show that the proposed measurement matrices can compress and reconstruct IR image prior to the ran-
dom Gaussian measurement matrices and random Bernoulli measurement matrices. The proposed recovery algo-
rithm also has a better performance.

Key words: compressed sensing (CS) , infrared rosette scan sub-imaging system (IRSSIS), deterministic meas-
urement matrices, optimized subspace pursuit algorithm ( OSP)
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Introduction

Traditional sampling methods follow Nyquist-Shan-
non theorem, which is applied to most of current data ac-
quisition systems. The data sampled in this way are e-
nough to recover the original signal, but it produces a
large amount of redundancy. Meanwhile, it also brings
inconvenience to signal transmission, storage and pro-
cessing. The emergence of CS provides a new way to re-
duce the number of samples needed to be processed''?’.
Consequently, CS theory has an extensive influence in
various fields"*”!.

IR sub-imaging guidance technology is used to de-
tect, identify and track targets based on the characteris-
tics of IR objects'®’. Tt replaces the traditional modula-
tion disk and holds a significant position in the field of
precision guidance during its appearance. The sub-ima-
ging guidance technology improves the ability of missile
to identify true and false targets. It has many notable ad-
vantages compared with television guidance and radar
guidance in the guidance accuracy and anti-jamming ca-
pability. In addition, it works with high sensitivity and
good concealment. On the other hand, the IR sub-ima-
ging guidance technology has some drawbacks such as
blur-image and low contrast, which increase the difficul-
ties in detecting, identifying and tracking targets. There
are still many problems that can be explored to improve
the IR sub-imaging guidance technology.

Single pixel camera captures an image with fewer
samples than conventional cameras based on CS theo-
ry’). We studied the potential application of CS technol-
ogy for the TRSSIS inspired by the single pixel camera.
The single detector has the merits of high sensitivity, fast
and low-cost compared with the focal plane array
(FPA). The IRSSIS samples part information of the
FOV with a specific pattern and gets a low-resolution
sub-image. We hope to recovery a high-resolution IR im-
age by CS technology, which includes more interested in-
formation about targets.

Uzeler et al. conducted a study on the image rec-
onstruction for single detector rosette scanning systems
based on CS theory!"”’. His work proposed the rosette
measurement matrix via vectorizing for each rosette scan-
ning pattern matrix, which corresponds to the circular in-
stantaneous field of view (IFOV) region. Numerical sim-
ulation experiments show that the reconstructed images
from samples collected by the rosette measurement matrix
are of sufficient quality. However, the reconstruction
performance of IR image depends on the position of tar-
gets in the FOV. The reconstruction performance of the
target in the center of the FOV is better than that on the
edge. This is the defect of the rosette measurement ma-
trix.

In this paper, we focused on the construction of de-
terministic measurement matrix for the IRSSIS. Inspired
by the rosette scanning pattern, a new class of determin-
istic measurement matrix was designed. In addition, a
fast recovery algorithm was proposed for IR image recon-
struction. Simulation experiments validated the recon-
struction performance of the proposed measurement matri-
ces and recovery algorithm.

1 Theory and methods

In the IRSSIS, the scanning system scans the total
field of view (TFOV) with the IFOV along a rosette pat-
tern. The IFOV of the detector is very small and the size
of the corresponding detector can be made small. There-
fore, the component noise and background noise are
greatly reduced, and the signal to noise ratio (SNR) of
target is improved. Theoretical analysis and experimental
results demonstrated that the rosette scanning is the most
suitable mode in all scanning methods.

The scanning system of the TRSSIS adopts the Cas-
segrain optical system as shown in Fig. 1 (a), which in-
cludes two titled prisms'"'. When the two tilted prisms
rotate around the spin axis at two different frequencies f,
and f, in the opposite direction, the IR detector receives
the radiation of the IFOV with a rosette scanning pattern.

The curve equation of the continuous rosette scan-
ning pattern is shown in Eq. (1), where d is the maxi-
mum length of rose petal and equals to the radius of the
TFOV, w, =27f, and w, =2muf, are the scanning angular
frequencies, 6, and @, are the initial phases:

a(t) = %(Cos(wlt+9]) + cos(wt +6,)) 0
(1
b(1) = %(sin(w]t +0,) - sin(ayt +6,))

The number of petals present in the rosette pattern is de-
noted as N =N, + N,, where N, =f,/f,, N, =f,/f, and
fx is called the scanning frame, which is the greatest
common divisor of f; and f,. The rosette scanning pattern

can cover the TFOV, but the sampling in the center re-
gion is denser than in other regions as shown in Fig. 1

(b).
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Fig.1 (a) System architecture, (b) rosette
scanning pattern

BT (a) REBEE, (b) BBLASMIAI R



34 JIANG Yi-Lin et al:Infrared image reconstruction based on compressed sensing and infrared rosette scanning 285

We proposed a deterministic measurement matrix
construction via the rosette scanning curve equation. A
rosette scanning pattern is performed with f; =290 Hz,f,
=70 Hz,f, =10 Hz,d =128,6, =6, =0. It can be seen
that once f,,f, and 0, ,0, are given, a and b of Eq. (1)
are only related to ¢. The time, in which rosette scanning
system completes one scan, is 1/f, =0.1 s. We sampled
N, =1024 points during 0. 1 s according to Eq. (1) uni-
b,(n=0,1,2---,1023) were obtained respec-
tively, which can be seen as the instantaneous locations
of the IR detector in the TFOV. The proposed determin-
istic measurement matrix construction is using these in-
stantaneous locations.

Firstly a deterministic sequence {z,} can be calcu-

formly. a

no

lated as follows

{zn = an + bll

. n=0,1,2---,1023 , (2)
z, = sin(z,)

then a circulant matrix @, e R"**“(C is a constant) was
constructed using the sequence |z, | in accordance with
the principle of column priority

2, z, e 2,

P, = : : . : - (3)
ZNg-1 ANp-1 T BNg-l

NgxC

If the sampling rate is 0.39, the size of the measurement
matrix @ should be 100 x256. We set the constant C =
25 and designed a measurement matrix @ e R'**° by
stacking @, , we got

% Zio Ut Rom

@ = |5 Foo T Zes (4)
Z z e Zy
99 %199 Ne=1 7 100xs6

The measurement matrix @ e R'*”**° was obtained
according to the method described above, and measure-
ment matrices of other dimensions can be acquired by
truncating the matrix @ e R"®° directly (30 <M <
100) :

2y Z100 2904
& =| 4 Zlo1 T Zoxs . (5)
Zyo1 o ZMe99 214923 7 15256

Similarly, we sampled N, =2048 points uniformly
with the same parameters of the rosette scanning system.

These points formed a new sequence {z, |, which can be
expressed as follows

z, =a, +b
{An 02 0,1,204,2047 , (6)
zn. = Sln(zll)
and a new circulant matrix @, was created using the new
sequence ;
2, 20 2,
z z ez
P, = | 7 Lo . - (D
ENpay o Fvga T Fveg

Ngx25
Measurement matrix can be obtained by stacking the
circulant matrix @,. The matrix @ e R***° was con-

structed by stacking @, , as

Zo %0 7T i
d =% Ao 21849 (8)
2199 2399 ENR-1 7 200x256

Similarly, the other dimensional measurement matri-
ces can be designed by truncating the matrix @ directly

(100<M<200) ;

) 2500 e 2848
D=~ 2201 T Zise . (9)
Zp-1 AM+199 Zv+1847 7 yryos6

Thus we have constructed a series of different dimension-
al measurement matrices from the rosette scanning curve.

2 Optimized subspace pursuit

Considering two factors, computational complexity
and reconstructed image quality, a new algorithm was
proposed for reconstructing IR images, termed OSP algo-
rithm. At present, most of the recovery algorithms are
based on the premise that the sparsity of signal is known,
but in general it is unknown for the sparsity of an IR im-
age. The subspace pursuit (SP) algorithm designed for

. . . [12]

sparse signal is a greedy algorithm"“". For the recovery
of IR images, the SP algorithm maybe not work. Hence,
we proposed the OSP algorithm based on the SP algorithm
to reconstruct IR images. In the SP algorithm, an esti-
mate T' of size K is maintained and refined during each
iteration. These processes were repeated until the residu-
al reaches certain conditions. In the proposed OSP algo-
rithm, an estimate A, of size K/5 is kept and refined
during each iteration, and the number of iteration is re-
duced to 5 without the sparsity of signal known as well.
Here, the sparsity level K takes a quarter of the number
of measurements. Specific steps are illustrated in Algo-
rithm 1.

Algorithm 1: Optimized Subspace Pursuit Algorithm (OSP)
Input sparsity level K,

sensing matrix 0 € RM XN,

measurements y.
Initialization ; iteration number k=0,
residual vector 1 =y,
estimated support set T = {.
ke—k+1,

p07r,

Iteration :

AJEHSUPP(I’[K/SJ ),
TyTy_ UA,,

X @;hy ,

Tk<—x11pp(,{f[,<] ),

Ty *@ka‘/(-

Until halting criterion is true.

Output ; The estimated signal x = Wx,

where W is the sparsity dictionary, ® = @W denotes the
sensing matrix, y = @x represents the measurements.
The procedure of IR compressive imaging based on
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CS theory can be described as in Fig.2.

Original X .| Measurement
image matrix
Reconstructed Reconstruction 24
image algorithm

Fig.2 The flowchart of imaging system based on CS theory
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3 Results and discussion

In this section, we evaluated the performance of the
proposed measurement matrices and the OSP algorithm
through numerical simulation experiments. We drew a
comparison among the proposed deterministic measure-
ment matrices, the random Gaussian matrices and ran-
dom Bernoulli matrices'”). The IR image to be recon-
structed is of size 256 x256. The sparsity dictionary was
chosen as the Discrete Cosine Transform ( DCT) matrix.
The orthogonal matching pursuit (OMP) algorithm was
used to reconstruct IR image'™'. The standard of recon-

structed IR image was estimated by the peak signal-to-
noise ratio ( PSNR). PSNR is defined as:

PSNR = 20 - log(—22__ydB , (10)
(x -x)*
where x is the original IR image, x is the reconstructed
IR image, “—" represents the mean.

First we constructed a deterministic measurement
matrix by Eq. (4). The reconstructed images using the
proposed measurement matrix, the random Gaussian ma-
trix and random Bernoulli matrix are shown in Fig. 3.
Figure 3 shows that the proposed measurement matrix
outperforms the random Gaussian matrix and random Ber-
noulli matrix from PSNR values obviously. It can be seen
there are much noise in all reconstructed images, and the
targets are almost submerged in noise. The reconstruction
results can only improve the detection probability. It is
worth mentioning that the image reconstructed by the pro-
posed measurement matrix is slightly clear than that by
the random Gaussian matrix and random Bernoulli ma-
trix. All reconstructed IR images lose some detail infor-
mation at lower sampling rate condition.

Figure 4 shows the performance of reconstructed im-
ages when the sampling rate is 0. 78. We constructed a
measurement matrix by Eq. (8), a random Gaussian
matrix and a random Bernoulli matrix. In this case, it
can be observed that the proposed measurement matrix
still outperforms the random Gaussian matrix and random
Bernoulli matrix. The PSNR value of reconstructed IR
image by the proposed measurement matrix is evidently
higher than that by the random Gaussian matrix and ran-
dom Bernoulli matrix.

Figures 5-6 show the PSNR values of reconstructed
IR images under different sampling rates with the pro-
posed deterministic measurement matrices, the random
Gaussian matrices and random Bernoulli matrices. It can
be observed that the PSNR values of reconstructed images

Gaussian 24.2436 dB Bernoulli 24.6450 dB

Fig.3 The PSNR values of reconstructed IR images using
random Gaussian matrix, random Bernoulli matrix and the
proposed measurement matrix at sampling rate 0. 39
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TERAEAN 0.39 I f) FEAL 2L A R S e 17 % LA

Gaussian 27.0166 dB

Bernoulli 26.8977 dB

Fig.4 The PSNR values of reconstructed IR images using
random Gaussian matrix, random Bernoulli matrix and the pro-
posed measurement matrix at sampling rate 0. 78
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does not improve as the sampling rate increases, but the
general trend is rising. On the whole, the reconstruction
performance using the proposed deterministic measure-
ment matrices is markedly better than random Gaussian
matrices and random Bernoulli matrices.

We examined the reconstruction performance of OSP
algorithm by comparing it with OMP, SP and CoSaMP al-
gorithms' /. The proposed deterministic matrices are
chosen as the measurement matrix. Figures 7-8 show the
reconstructed images and corresponding PSNR values
with four different recovery algorithms at sampling rate
0.33 and 0.55.

It can be seen that there are notable distinctions in
the reconstructed images with different recovery algo-
rithms. In Fig. 7, the PSNR values of reconstructed ima-
ges by OMP and OSP algorithms are obviously higher
than that by SP and CoSaMP algorithms, and the per-
formance of CoSaMP algorithm is the worst among them.
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Fig.5 The relation between sampling rate and PSNR val-
ues of reconstructed IR images with the proposed measure-
ment matrices, the random Gaussian matrices and random
Bernoulli matrices at sampling rate of 0. 13 to 0. 39
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Fig.6 The relation between sampling rate and PSNR
values of reconstructed IR images with the proposed
measurement matrices, the random Gaussian matrices
and random Bernoulli matrices at sampling rate of 0. 39
to 0.78
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From Fig. 8, it can be observed that the reconstruction
performance of SP and CoSaMP algorithms have a greater
ascension. However, comparing the four reconstructed
images, the PSNR value of reconstructed image by OSP
algorithm is also higher than that by OMP, SP and Co-
SaMP algorithms. The reconstructed image of OSP algo-
rithm is the clearest and more details can be captured by
it, which cannot be observed in the remaining three re-
constructed images.

4 Conclusions
In this paper, a new deterministic construction of

measurement matrices used for the IRSSIS was presen-
ted. Besides, a low-complexity recovery algorithm was

OMP 25.2270 dB SP 22.5964 dB

CoSaMP 13.8409 dB OSP 25.8279 dB

Fig. 7  The reconstruction performance of test image with
OMP, SP, CoSaMP and OSP algorithm at sampling rate 0. 33
K7 DK R TR R A AR 0. 33 1F OMP, SP, CoSaMP #il
OSP J 1k (1 Hi AL 22 Y

OMP 26.2690 dB SP 25.3207 dB

OSP 27.0511 dB

CoSaMP 23.978 dB

Fig. 8 The reconstruction performance of test image with
OMP, SP, CoSaMP and OSP algorithm at sampling rate 0. 55
K8 K EARAE R AR 0. 55 F OMP, SP, CoSaMP il
OSP S By Al R I

proposed for the reconstruction of IR image. CS provides
a new fashion for the IRSSIS to make the number of sam-
ples get reduced greatly and recovery a better quality IR
image at the same time. Simulation results demonstrate
that the constructed deterministic measurement matrices
have a comparable performance with the random Gaussi-
an matrices and random Bernoulli matrices. The OSP al-
gorithm is suitable for IR image reconstruction in accord-
ance with PSNR and visual inspection. The research on
the relation between the new deterministic measurement
matrices and rosette scanning system will be further stud-

ied.
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simple microstructure. The laser devices with exceeding
1 W output power were realized. It was found that the
deep microstructure could reduce the lateral-mode num-
ber more effectively. About 57% and 8% improvement
in lateral FF angle were achieved with decreased peak-
number and increased power from deeply etched micro-
structure compared with the devices without and with
shallow microstructure. We believe that these results will
contribute to the development of high-power low-diver-

gence GaSbh based BA diode lasers.
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