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Space projection estimator and temporal iteration scene-based
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Abstract: In this paper, an improved scene-based non-uniformity correction (SBNUC) algorithm called space pro-
jection estimator and temporal iteration ( SPETI) is proposed. This method estimates the global translation by the
projection estimator and iterates between several adjacent frames. The detailed method includes three main steps.
First, we develop a new projection estimator for the registration with a criterion. Then, correlation of adjacent
frames, together with iteration strategy between them, is used in order to get fast and reliable fixed-pattern noise
(FPN) reduction with low few ghosting artifacts. Finally, this algorithm is immigrated into an FPGA-based hard-
ware system. We test the performance of our algorithm by the evaluation indexes, and demonstrate the actual effect
of correcting the non-uniformity under a monotonous motion on the system. In order to compare with the gated a-
daptive least mean square ( GALMS) method and the total variation ( TV) method, a clean infrared image se-
quences with synthetic non-uniformity is studied. Normal distributed gain and offset non-uniformity are applied to

the image sequences to study the relationship of iteration times and level of non-uniformity.

Key words: scene-based non-uniformity correction, space projection estimator, temporal iteration, continuous mo-
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ture, medicine and scientific research. However, be-

Introduction cause of the disparity of technology equipment and the
defect of material, IRFPA has an intrinsic shortcoming

Infrared focal plane array ( IRFPA') sensors are that is the non-uniformity which results in a fixed pattern
widely used in the fields of aviation , industry, agricul— noise on images[]] . In order to solve the prob]ern, corre-
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sponding non-uniformity correction ( NUC ) algorithms
have been proposed, especially the scene based non-uni-
formity algorithms. The scene based non-uniformity algo-
rithms have been developed rapidly nowadays, such as
the constant statistical NUC"*® algorithm, the neural
network NUC algorithm'*"*) | the image registration NUC
algorithm' "' | and the time-domain high-pass filter
NUC algorithm'"7?! . All the algorithms mentioned above
have their scope of application. For example, the high-
pass filter NUC algorithm , neural network NUC algorithm
and the constant statistical NUC algorithm perform well
. . . [5,9,11,18-19]
on the high space frequency non-uniformity ,
but incredibly poorly towards the low space frequency
non-uniformity, and even worse, the ghost artifacts when
. [67,10,20-21] .
the scene is from rest to movement . The regis-
tration NUC algorithm performs well on these two kinds of
non-uniformity*"*) | but it cannot avoid facing the fatal
problem of the possible misregistration, which can cause
the error correction. Until today, the research of most
scene-based NU correction algorithms is remaining in the
laboratory stage. They may be developed very sophisti-
cated, but no report shows that they can be realized on
the small packaged, low power consumed real time hard-
ware systems. Meanwhile, most video sequences cap-
tured for testing the performance of an algorithm are un-
der good state of motion, which means that the scene mo-
tion is enough in all directions. However, in real appli-
cation, most scenes have both the high frequency and the
low frequency non-uniformity, which means that the
multi-frame accumulation class of algorithms cannot per-
form well. And meanwhile, the motion is mainly toward
one monotonous direction, which cannot provide suffi-
cient motion information to the algorithms using the regis-
tration method as the core.

In most cases, the infrared thermal imager is used
to detect and track targets from a distance away for both
civil and military aim. According to this usage, the aero-
photographic image sequence captured by the thermal im-
ager always has two main defects; 1. The scene will
transfer from one to another rapidly, which means that
the original correction coefficient will not be effective
perfectly anymore, then the non-uniformity will show up.
This will degrade the vision effort for the user. 2. During
the transition, the direction of the scene motion always
towards a monotonous direction, and the transfer speed
may be varying from slow to fast or the opposite according
to the target’ s movement. When these happen, if the
newly non-uniformity level is too strong, the registration
algorithm will stop working because no displacement can
be calculated. On the other hand, if we use the multi-
frame accumulation class of algorithms, the ghost arti-
facts will be due to occur because of the transition speed.

In the real IR detector, the high frequency non-uni-
formity is mostly expressed as the column or the row
stripes and the low frequency non-uniformity is mostly ex-
pressed as the patchy pattern. They both exist in the im-
age. In this paper, we mainly use a new registration
method to correct them. Before we descript the algo-
rithm, let us lay the eyes on the scope of application of
our system. The IR imager is located in the mid-air by
plane to capture the aerophoto of the ground. Under this
particular situation, the captured image sequence will

have the two defects mentioned above. Meanwhile, the
second defect is more obvious. Usually the plane is flying
towards a monotonous direction which means that the im-
age sequence will move in the same direction and only
this direction, a little vacillation will occur due to the
bumps during the flight.

Under this consideration, we propose a novel scene-
based non-uniformity correction technology not only fits
the situation mentioned above but also has been realized
on the small packaged, low power consumed real time
hardware system. Now, the technology has been applied
on a specific system for some particular usage. We test
the performance of our algorithm by real captured image
sequence through the hardware system.

This paper is arranged as follows. In Section 1, the
space projection estimator and temporal iteration NUC al-
gorithm is presented. The kernel idea of these two algo-
rithms is to reduce the calculation amount and improve
the convergence speed with almost no ghosting. Perform-
ance analysis of the algorithm and the effort on the real
hardware system is shown in Section 2. We discuss the
correction effect of our algorithm and also demonstrate the
real time correction performance within the hardware
platform. In Section 3, we make a conclusion and per-
spective of our research work.

1 Description of the space projection es-
timator and temporal iteration NUC algo-
rithm

It is well known that, the non-uniformity correction
is always being done by iterating the gain and bias coeffi-
cient. Since our aim is to develop an algorithm which can
be fully immigrated into the FPGA based hardware sys-
tem, the traditional 2-D registration is no longer applica-
ble because it is impossible to conduct the tremendous
calculation of the 2-D Fourier Transform of an image in
the FPGA. We follow the inspiration of Stephen C.
Cain'?! by developing a new space projection estimator
to simply compute the relative displacement of two neigh-
boring images for the registration, and then by adding a
certain criterion we finish the correction. Here we de-
scribe our new space projection estimator and the adding
criterion as follows:

1). If the dimension of the image is M x N, the
horizontal and vertical directions projections of the im-
age, p.(i) and p’ (i), can be defined respectively by

i=Mj=N

Pi) = Xp (i) = 3 Pixel(i)/N (1)
p.(j) = pr(i,j) - ﬂzﬂPixel(i,j)/M .(2)

= i=1;=1

2). In any real imaging system, there will be new
information entering the field of view. The space projec-
tion estimator is sensitive to this new information which
causes the registration to be less valid. Stephen C. Cain
designed a sliding window filter and added it to the space
projection estimator to make the algorithm ignoring the
new information. We find that the computation of this fil-
ter is still too much for the FPGA and it is hard to realize
only using the Hardware Description Language ( HDL).
In this case, we use a cosine-sine fixed window filter as a
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substitution. It turns out that, the performance of our fil-
ter is more stable than the sliding window filter, and
more importantly, it is realizable. The cosine-sine fixed
window filter can be described as follows.

For column projection ;

pi(})(l +COS(1T(5|-0\\ -1 _J)/(Srow)),j <3S

oW

i 2
p.() = : .
plﬁc(.]) (1 - Sln(ﬂ(am“é_ 1 _j)/S'IOW))vj > N - 6!'0\\4
, (3)
For row projection:
iy (Pt T 212000 5

pL(i) =

col

, (4
where §,,, and 8., are the maximum shift of the vertical
and horizontal direction.

3). We need the two neighboring frames to deter-
mine the relative displacement. That is to say, we have
to acquire two frames and set one of them as the refer-
ence frame and the other as the current frame. We use
their space projection estimators to calculate the cross-

correlation matrixes as follows:
=28, +1
J=N=-28,,+1

Cofu =

i=T,=1

p]Y(L)(l —sin(w(5c012—1 —i)/ﬁml))’i S M—5

row

(ref  (j+i-1) —cur, (5, +i))’
, (5)

i228+1
j=N=28.0+1

Cof., = z

i=1,j=1

(vef ,(j+i-1) —cur, (8, +1) )2
(6)

Once the cross-correlation matrixes have been deter-
mined, we can get the relative displacement d,, and d_
by choosing the minimum value among these two matri-
Xes

d.. éarg min( Cof, ) , (1)

d., 2 arg min( Cof ;) . (8)
After the registration, we discuss the certain criteri-
on used as the implementation of the correction. We use
a 3 x3 window to conduct the criterion by comparing the
4 neighboring pixel value to the center pixel to adjust the
original image as follows:
Py = [P(i,j~1) = P(i,j)| < TH
Py = |P(ij+1) = P(ij)| < TH
P = |P(i~1,j) = P(i,j)| < TH
Py = |PGi+1,)) = P(ij)| < TH
Usually the 2-D registration algorithm will conduct
the correction on both the gain and bias coefficient after
the relative displacement has been computed. But our al-
gorithm divides the correction into two parts as shown a-
bove especially for the scope of application of our aero-
photographic image sequence. The learning rate has been
divided into both the registration part and the ecriterion

(9)

adj adj adj

PO P(ij-1) + POV - P(iLj+1) +

adj

part. It can be seen from the equations, the criterion we
used will work together with the space projection estima-
tor to conduct the correction. To the real image se-
quence , the space projection estimator will be affected by
the high frequency non-uniformity and cause it to work
less effectively. The criterion we used to converge the
high frequency non-uniformity is faster than the low fre-
quency non-uniformity. Once the high frequency non-u-
niformity has been weakened, the space projection esti-
mator will calculate the relative displacement of neighbor-
ing frames accurately. Then the low frequency non-uni-
formity will be corrected after several frames.

The next image sequence is captured using our
hardware system with this proposed technology. We lo-
cate the IR imager on a plane while it is flying across the
city. This makes the image sequence moving towards a
monotonous direction of the south. And it can be seen
from the sequence that the image has stripe pattern high
frequency non-uniformity and the patchy pattern low fre-
quency non-uniformity. In fact, in most of the real appli-
cation of the imager, the non-uniformity pattern will have
both these two kinds and the similar motion. When the
algorithm starts working, the incoming image will first be
adjusted by the criterion of Eq. (10). Then the algo-
rithm will calculate the error E ,J) between the o-
riginal image and the adjusted image, and use the error
to conduct the convergence one time as follows :

criterion ( L

Eurilerion(i’j) =P(L’]) _poul(i’j) ) (11)
Gain (i,j) =
Gainxorigim\l (3]) + Coriterion * Eesiterion (157) Y(i J)
{where( i,j)th is in the overlap area ,(12)
Gain ;. (7,7) else

Offset (7,j) =
Offsetoriginal(i’j )+ Qugiverion * ERROR i (7,7)
{where(i,j)th is in the overlap area ,(13)
Offset ;0 (i,7)  else
where the Gain(i,j) and Offset(i,j) are the corrected
coefficient under the criterion, ..., 1 the learning rate
under the criterion, Y(i,j) is the observed signal of the
FPA.

As we mentioned above, the criterion is effective to
the high frequency non-uniformity. After the one time
convergence, the space projection estimator will step up
to calculate the overlap area of neighboring frames to de-
termine the relative displacement, thus to conduct the
second time convergence as follows' ™’ ;

e,(i,j) =X, (i-d,,j-d,) -X(i,j , (14)
Cain n+l ( L ’]) =

Gainn,(iij) + App * 6"(i,j) Y,;(Ly.])

{Where(i,j)th is in the overlap area ,(15)
Gain, (i,j) else

Offset ,,,(i,/) =
Offset, (i,7) + ap; = e,(i,])

{where(i,j)th is in the overlap area ,(16)
Offset, (i,/) else

where the e, (i,j) is error matrix of the neighboring

=0

adj

Puul ( L ’j) = d(]/

adj adj

PG PG = 1,) + P - PG+ 1) | (10)
P(i,j—l) N P(i'j+1> L P(i—l,j) + P(i+1.j) ; €lse.

adj adj
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frames. The Gain(i,j) and Offset, (i,j) are the correc-
ted coefficient under the space projection estimator. ap;
is the learning rate under the space projection estimator.
These are the accelerations in spatial-domain.

To get more accurate estimate and fast convergence,
we iterate the Gain,(i,7) and Offset, (i,j) parameter in
K adjacent frames, which can be regarded as the acceler-
ation in time-domain.

For ke [0,K-1]

Forle[k,K-1]

E,,Gj)=X,,(i,)) =X, (i +h,j+v)
Gain, ,(i,j) =

Gainu—[—l (L’]) o Eu,/,(i’j) Yn,[(i’j)
{where(i,j) th is in the overlap area
Gain, ,_,(i,7) else
Offset, ,(7,/) =
Offset, ,_,(i,j) +a - E, ,(i,j)
{where(i,j) th is in the overlap area .(17)
Offset, , ,(i,7) else

So the total number of iteration is K + (K —1)/2.
The use of correlation of adjacent frames, together with
iteration strategy between them, makes our algorithm ‘s
convergence speed so high that processed images have al-
most no ghosting artifacts.

2 Performance analysis of the algorithm
and the effort on the real hardware sys-
tem

In this section, we will analyze the performance of
our algorithm by some evaluation indexes, and then dem-
onstrate the real effort of this technology by applying it
onto a real time FPGA based hardware system.

The following figure is captured by the hardware
system using an EP2C20 serious FPGA as the processing
unit ;

It can be seen from Fig. 1 that the captured image

N
1110

Fig.1 The real performance on the hardware system

KL BEPER GRS RERCR K

has strong stripe pattern high frequency non-uniformity
and patchy pattern low frequency non-uniformity. The
convergence step just like what we have discussed above.
To compare with the traditional 2-D registration algo-
rithm, we process both our technology and the traditional
2-D registration algorithm on the same image sequence.
As we predicted before, if we only conduct the traditional
2-D registration algorithm, it is hard for us to find the ex-
act movement of the sequence, which makes the algo-
rithm think the image sequence is zero moving.

After a few frames, the stripe pattern high frequency
non-uniformity has been corrected, leaving only the
patchy pattern low frequency non-uniformity. Then the
projection estimator can work its magic and finally correct
most of the patchy pattern low frequency non-uniformity.
Finally, the iteration method is used to get more accurate
estimate and fast convergence.

The following experiment is designed for comparing

the proposed method with the GALMS method' ! and the

TV method' ™. The infrared sequence with artificial non-
uniformity is generated from a clear 300 frames infrared
video sequence acquired at 50 frames per second
(FPS), using a synthetic gain with a unit-mean Gaussi-
an distribution with standard deviation of 0.2, and a syn-
thetic offset with a zero-mean Gaussian distribution with
standard deviation of 40. The metric used to measure the
NUC performance is given by the root-mean-square error

(RMSE) , which is defined as
_ L . _ < .o 2
RMSE =[50 (VG - K0t L ()
where X(i,j) is the original value of the pixel, X(L,]) )

is the corrected value of the pixel. M N is the dimension
of the image.

Fig.2 RMSE results of the non-uniformity correction using
different methods

K2 ZREEE A HERAE D7 i) RMSE il

It can be observed from Fig. 2 that the RMSE of the
proposed method can be reduced below 20 within only 20
frames, when the criterion is dealing with the high fre-
quency non-uniformity. Then the convergence speed is
slowing down because the low frequency non-uniformity
is being corrected. As mentioned above, the speed is al-
so involved with the learning rate. During the test, we
choose the two learning rates as 0. 03 both.

Figure 3 shows the images for the 20th frame. Fig-
ure 3(a) shows the raw image corrupted with simulated
non-uniformity. The outputs using GALMS, TV and
SPETI are shown in Figs. 3 (b)-3(d), respectively.
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Fig.3 Correction with simulated non-uniformity images u-
sing different methods( Frames 20th) (a) Images with simu-
lated gain and offset non-uniformity, (b) Corrected result of
the GALMS method, (c¢) Corrected result of the TV meth-
od, (d) Corrected result of the proposed method

B3 ZFREEERS AT AL E SR AR B (55 20 W) (a)
IRIASEAULIE 25 A0 5 n AR X S R, (b) GALMS 5532
KOIERURE, (¢) TV HIEAIERCR B, (d) AU E
BRI

The GALMS method, in contrast, converges more slow-
ly. There is still heavy non-uniformity in the outputs of
GALMS. The TV method converges much faster than the
GALMS, but there is still some residual non-uniformity
that can be perceived in the outputs of TV. However, in
the SPETI s output, it effectively generates much fewer
ghosting artifacts than the other techniques. Besides, the
level of residual non-uniformity is rather low. It can be
seen that the proposed SPETI algorithm almost eliminated
the FPN within only 20 frames. It is easy to find that the
SPETI compensates the non-uniformity the fastest and
performs the best over the sequence.

After dozens of frames, the non-uniformity level of
the GALMS and TV method has been lowered to an ac-
ceptable level, kind of like the final result shown in Fig.
4(b)4(c). The result of GALMS shows serious ghos-
ting, while some ghosting artifacts of the wire poles can
be appreciated in the result of TV. At the same time,
there is almost no ghosting artifact in the result of SPETI.
It is no wonder that SPETI gives good results.

3 Conclusion

In this paper, we propose a new scene-based non-
uniformity correction technology for the monotonous mo-
tion and complex non-uniformity. Our technology is more
effective than the multi-frame accumulation class of algo-
rithms, and meanwhile, comparing to the traditional 2-D
registration algorithm, our algorithm is much simpler in
computation according to its theory and can be fully real-
ized on the hardware system with only one FPGA as the
core and no report shows that the 2-D traditional registra-
tion algorithm can do the same thing. We finish the im-
migration and use the system we build to test the per-
formance of our technology. Somehow there are still some
defects existing in the algorithm, for example in Fig. 1,

Fig.4 Correction with simulated non-uniformity images u-
sing different methods( Frames 410th) (a) Images with sim-
ulated gain and offset non-uniformity, (b) Corrected result
of the GALMS method, (c¢) Corrected result of the TV
method, (d) Corrected result of the proposed method

&4 ZRBHEE SR E B RBOR 18 (25 410 i) (a)
I ALIIE 25 F0 2 0 R 3 5 PR B, (b) GALMS ik
BOERCRIE, (o) TV B IESCR K, (d) A SR B IE
ORI

there is still some left over low frequency non-uniformity.
This is because the motion of the image sequence is al-
most extremely towards a monotonous direction, which
makes the brightness of that area hard to transfer into the
next frame. We will continue our research and fix this
problem in the future work.
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