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A gradient-based steering kernel reconstruction strategy
for semi-random Fourier measurements in compressed remote sensing
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Abstract: A gradient-based steering kernel ( GradSK) reconstruction strategy for compressed remote sensing is pro-
posed. It aims to solve the artifacts and blurriness caused by the none-strictly sparsity and the noisy Fourier under-
samples. Semi-random Fourier measurements are presented for encoding, which can preserve approximating com-
ponents of images and retain the incoherence by random undersamples in the periphery of K-space. The steering
kernel derived from multistep gradients is exploited to encapsulate with finite-difference Total Variance (TV) in the
unconstrained convex framework for decoding. Numerical results demonstrate the superior performance of this algo-

rithm in the case of noiseless and noisy measurements for compressed remote sensing.
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Introduction

Compressed sensing ( CS) is a recently proposed
theory that allows the reconstruction of a signal sampled
in violation of traditional Nyquist criterion. It has been
applied to remote sensing, medical imaging, information
coding, astrospectroscopy et. al. For traditional remote
sensing, millions of pixels have to be sampled to formu-
late a high resolution image. It brings challenges to the
sensors and sampling systems. Furthermore, the storage
space is a limited resource in the remote sensing plat-
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form. Therefore, image data need to be compressed be-
fore transmission, and then decompressed at each receiv-
er station. As a result, large number of data have to be
discarded, and inevitable distortions occur during the
compression and decompression procedures.

Compressed remote sensing ( CRS) optimizes the
flows of data acquisition and image processing, which
combines sampling and compression into linear under-
sampled measurements. Likewise, CS reveals that a
compressible unknown signal can be recovered from in-
complete linear measurements by particularly designed
nonlinear reconstructions. Accordingly, the number of
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measurements in CRS is far fewer than those required by
traditional sensors. The potential advantage of CRS is
that remote sensing instruments can work in low light
conditions, and demands for less cost, i. e. power con-
sumptions, sensor sizes, sampling and compression sys-
tems and so on. Up to now, the most representative de-
sign of CRS is the single-pixel digital camera presented
by Baraniuk er. al''’ of Rice University, utilizing the
DMD as the random binary measurements in spatial do-
main. Another type of CRS is spatially modulated image
Fourier transform spectrometer' >’ that randomly measured
in Fourier domain. Limited sensors in parallel Fourier-
domain imaging are utilized to achieve higher resolutions
that traditional imaging cannot reach. Compared with the
spatial CRS, Fourier measurements can save the imaging
time. The crucial step of CS is the nonlinear reconstruc-
tion of ill-posed underdetermined linear inverse problem.
State-of-the-art reconstruction algorithms have been pro-
posed recently to solve the problem, such as orthogonal
matching pursuit (OMP)"**! | iterative hard thresholding
(IHT) " and gradient-based algorithms'”’. The OMP
algorithm recovers images by choosing the column of
measurement matrices that is most strongly correlated
with the remaining parts of image matrices. Therefore,
the performance closely relies on the selected measure-
ment matrices and the number of samples. THT method is
quite easily to be implemented through iterations. It has
been not widely applied due to its slow convergence and
the hard selection for thresholds. Gradient projection re-
covery algorithm poses an unconstrained convex optimiza-
tion problem and exploits total variation (TV)'® as the
sparsifying transform. While these approaches yield a
significant reduction in the sample numbers, the perform-
ance is likely to be affected by the approximate sparsity
and the noisy measurements.

In this letter, we propose a so-call GradSK recovery
strategy for incomplete Fourier remote sensing systems.
For sake of compromise between incoherence and robust-
ness to noise, the semi-random scheme is proposed to
undersample the Fourier coefficients, which choose sam-
ples randomly with density scaling according to 2-D func-
tion. Therefore, most energy in the main lobe of function
can be preserved to construct the approximate compo-
nents of images, and the incoherence between sparsifying
matrices and the measurement matrices is remained by
the random undersamples in the periphery of K-space.
Integrated with the semi-random Fourier measurements,
we encapsulated both the TV and local structural regular-
ity into the iterative reconstruction framework and opti-
mized the reconstruction by using the gradient descent
method. In the prior terms, steering kernel” is em-
ployed for the local structure regularity of natural remote
sensing images, which preserves the edges and reduces
the blurriness for noisy measurements. The experiment
results indicate that GradSK with the noiseless and noisy
semi-random Fourier measurements achieves substantial
performance gains compared with its counterparts.

1 Gradient-based steering kernel recov-
ery (GradSK)

1.1 Problem formulation in compressed remote
sensing

The problem of estimating N-dimensional original
data X can be formulated mathematically as an inverse
problem (K < <N), where-dimensional measurements Y
collected by a compressed remote sensing imaging system
are represented as follows :

Y=pX +¢ , (1)
where & denotes the possible measurement errors or noi-
ses, and compressed optical measurements are described
as K x X measurement matrix @.

The CS theory asserts that it is possible to recover
sparse images from a small number of random measure-
ments in time or Fourier domain 0", However, most
remote sensing images are taken from large field of
views, so that the complex scenes in remote sensing ima-
ges bring about non-sparse in a variety of cases. There-
fore, X should be denoted as the K-dimensional sparse
data « in sparse basis transform ¥, i.e. , X =Wu s. t.
Ha”m =K x N, where Ha”m returns the number of nonze-
ro elements. If the measurement matrix @ and sparsifying
transform W satisfy the Restricted Isometry Property
(RIP), the reconstruction can be regarded as solving L1
minimization problem

min|al, st [|Y - @wall, <& - (2

Several CS architectures for practical optical imaging
systems have been developed recently'”” ™). Figure 1 il-
lustrates one of such representative approaches with spa-
tial light modulation, whereby the aperture modulates the
light in the image’ Fourier plane. The measurements in
Fourier domain refer to the random undersampling F| for
Fourier coefficients ¥ called K-sparse space, i.e. @& =

n=F (Fo). Accordingly, the reconstruction is ob-

tained by solving the unconstrained Lagrangian as fol-
lows :

X =arg min|[Y - 7. X[, + A [ wx], . (3)

The accuracy of CS reconstruction is generally af-
fected by two factors: (1) The general objects of interest
in remote sensing images are approximating sparser rather
than strictly sparser, even in the basis of sparsifying
transform ¥; (2) The measurements have to be inter-
fered with noises more or less, as a result of the limited
precisions of sensors. Most recovery strategies for com-
pressed remote sensing imaging would be degraded or e-
ven failed with the noisy measurements. Therefore, the
reconstruction strategies robust to perturbations in meas-
urements are demanded imperatively.

Va7 lf s s ) s e ]

Fig. 1  Compressive sensing camera architectures in Fourier
domain
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1.2 Gradient-based Steering Kernel Reconstruction
For Semi-random Fourier Measurements

Most existed measurement matrices are derived from
the random Fourier measurements, which are considered
to achieve more incoherence for almost all sparsifying
transforms. The greater incoherence between measure-
ment matrix @ and sparsifying transform ¥, the fewer
measurements are required. However, most blind recon-
structions with completely random measurements cannot
obtain expected performance since of approximate sparsi-
ty or noisy measurements, no matter in spatial or Fourier
domain. As we all know, most energy of images is con-
centrated close to the K-space origin in Fourier domain,
as shown in Fig.2(b). These observations show that, for
a better performance with remote sensing images, one
should be undersampled less near the K-space origin and
more in the periphery of K-space. Therefore, semi-ran-
dom undersampling in Fourier domain is proposed in this
paper.

One may choose samples randomly with sampling
density scaling according to 2-D function. All of the Fou-
rier coefficients in the main lobe of function are sampled,
so that most energy can be preserved to construct the ap-
proximate components of images. Meanwhile, other coef-
ficients of side lobes are randomly undersampled with the
probability density function . The parameters related to
the desired resolution of CRS are set to be 0.05 and 0.

8, respectively.

rand(0/1) ,sinc(af,) < o
,sine(afy) = o

F(Fa) = {] (4)

(©)

Fig.2 Landsat TM band 5 image. (a) Original remote sens-
ing image of Landsat TM Band 5, (b) Fourier spectrum, (c)
Total variance (TV)

K12 Landsat TM {48 BL 5 ER (a) JbaiE i &g,
(b) i IM3E, (o) ARESF I 2

In the decoding step, a new gradient-based recon-
struction approach so-called Gradient based Steering Ker-

nel (GradSK) is presented, while total variation (TV)
and steering kernel smoothness is taken as the regulariza-
tion. Instead of reconstructing by raw pixels, we exploi-
ted the steering kernel as the constraint in the TV mini-
mization solving for semi-random Fourier measurements.
The steering kernel indicates that pixels on the same side
of edges have much stronger relevance than pixels on dif-
ferent sides. Therefore, the regularization term of steer-
ing kernel for flat areas can spread to reduce the noise
effects, while for texture areas it is able to restrain the
blurriness and preserve the details.

X = arg min{ 1Y = Fo XI5 + 2 X ]y +y X -E,(X) I} }
, (5)

where ||Y—7QX lez satisfies the global undersamples in

Fourier domain, and the second term |X ||TV minimizes
TV semi norm to recover edges. The third term E, (X)
for iterations is described as

E,(X) = arg min(X -PX)"W"(X -PX)
=(P'"W'P) 'P'"W'X . (6)
The weighted matrix W* is denoted according to lex-
icographic orders of xl]; And the C; is the symmetric gra-
dient covariance at , which structures the local kernels.
/det(C;) { (x,;j-—x)TC,y-(xij—x)}
exp{ —

21h; 2h;

wlf(x —x;) =

(7)

In Eq. 7, h; is the smoothing parameter. P repre-
sents the gradient polynomial, and vech ( ® ) operator
stands for an operation to stack the lower triangular part
of a matrix into a column vector.

P:[_l (x,;j-—x)T VechTﬁ(x,-/- —.x)(x,;j—x)T}]
(8)

Therefore, combing all of terms together, we can
get the reconstruction by solving

X= argxmin{ |y —\7QX||?2 + A1 Xy

+y 1= (P'W'P) "' PTWEIX} | -9

The optimization of Eq. 9 can be effectively ad-
dressed by using the gradient descent method"*"',
e.,

Xk+1:Xk _,U/k vf(Xk) , (10)
where u' is the step size of iterations, and the gradient of
cost function V f(X) is computed as follows

VAX) =273 (Fo X =Y) + AV [ X[y
+2y[I - (P"W'P) 'P'W"]°X

The gradient of total variance V || X[y is. defined
as:

h v v
di; +d;; ~ d;_;
V) + ()T L)+ (dl)

d .
- h 21!} v 2 (12
«/( di,j—l )T+ (di,j—l)

where the derivatives of X along the horizontal and verti-

v HX“'I‘V =

cal directions are respectively denoted as dfyj(x) =x;; —

v
Xij+1 ’di,,j(x) =X T X
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2 Numerical experiment and analysis

In this section, gradient-based steering kernel re-
covery algorithm is compared with L1TV and IHT for
simulation of compressed remote sensing imaging in Fou-
rier domain. The tested images are chosen from remote
sensing datasets, including Landsat TM and AVIRIS. In
these experiments, relative error (RE) "' and peak sig-
nal to noise ratio (PSNR) are used to measure the per-
formance of four algorithms. They are defined as:

Ix - x| @' -1)*
RE=12"21 psNR =10 lg[ -
HX”z HX_X”z

where is defined as X and X.
2.1 GradSK for various samplings in Fourier do-
main

] , (13)

CS measurements are generated by applying Fourier
transform for each test image, and then the Fourier coef-
ficients are partially undersampled according to the sam-
pling schemes. The compression proportion is determined
by the ratio of measurement numbers (RMN)O0. Figure 3
(a-0)-(c-0) show the semi-random and another two rep-
resentative sampling scheme patterns, i. e. random sam-
pling and radial sampling. The ‘1’ locations in the bi-
nary patterns are reserved, while the ‘0’ locations are
discarded. In this experiment, we compared the perform-
ance of GradSK with the three sampling schemes by set-
ting RMN =30% . The images reconstructed by GradSK
in noiseless cases are presented in Fig. 3 (a-1)-(c-1).
For the noisy cases, Gaussian noises with variance g =1
and o =10 are added into both the real and imaginary
parts of Fourier coefficients, which are demonstrated in
Fig.3(a-2)-(c-2) and Fig. 3(a-3)-(c-3), respective-

ly. Both of the radial and semi-random sampling schemes

Fig.3 GradSK with representertive sampling schemes. (a-0 ~3) random sampling scheme pattern and reconstructed
images with Gaussian noises o =0, o =1, o =10; (b-0 ~3) radial sampling scheme pattern and reconstructed images
with Gaussian noises o0 =0, o =1, 0 =10; (c-0 ~3) semi-random sampling scheme pattern and reconstructed images

with Gaussian noises ¢ =0, o =1, o =10

B3 BT R A R 4R E R A (1 R T 58 (-0 ~ 3) T 08 0 =0, o =1, o =10 IYBEHLRFETT %
FAGEIR (b0 ~3) miig AN o =0, o =1, o =10 AR FEERHETT R L EMEE, (c-0 ~3) @iiiiE R o =0, o

=1, o =10 KEREPLRAE T 58 L A4
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outperform random sampling at the small RMN for noise-
less measurements, since texture information is preserved
by sampling most of high frequency Fourier coefficients.
Figure 3(b-2) and (b-3) indicate that the radial sam-
pling is more sensitive to the measurement noise than the
proposed semi-random. The absence of randomness in
radial sampling schemes causes the artifacts in the noisy
cases.

2.2 Comparison with other three reconstruction al-
gorithms

We generated the noiseless and noisy test sets for
comparison with ZerosFill, IHT and L1TV. In both
tests, we set A =y =0. 01 for all GradSK reconstruc-
tions, and the initial reconstruction starts from zeros for
[HT.

In the noiseless test, twenty remote sensing images
are reconstructed from only 10% to 50% RMN in the in-
crements of 5% without measurement noise. Figure 4
demonstrates the performance of four algorithms consider-
ing 40% noiseless measurements. Figure 4 (a) depicts
the recovery result using direct zeros-filling reconstruc-
tion. In IHT reconstruction shown in Fig. 4 (b), sym8
wavelet is used for the basis of sparsity, while the initial
thresholding value is set to 0. 06. Figure 4(c) demon-
strates the reconstruction of L1TV. According to the rela-
tive error images, the reconstruction of L1TV suffers from
artifacts, despite better than ZerosFill and THT. And the
proposed GradSK is superior to others especially in the
rich texture. Figure 6 (a) shows the corresponding RE as
the RMN increases. It is clear from the statistic curves
that IHT performs a slightly better than other three algo-
rithms while RMN <25% . With the increasing of RMN

from 25% , the reconstructed images of GradSK are clos-
er to the original ones, benefitting from the steering ker-
nel constraints.

The second experiment is very similar in nature ex-
cept that the real and imaginary parts of Fourier coeffi-
cients are interfered with ¢ =0. 1 Gaussian noise. Figure
5 gives the RMN =40% set of reconstructed images as
the demonstration for noisy measurements. The images of
the second and third rows in Fig. 5 are partially enlarged
views of the reconstructions. The images recovered by
ZerosFill and THT respectively shown in Fig. 5(a) and
(b) are blurred by the noisy measurements. Not all wea-
ker components below the threshold in Fourier domain
can be recovered during the iterations of IHT. Figure 5
(d) demonstrates the reconstruction of the proposed
GradSK, which preserves much more edges than L1TV
shown in Fig. 5(c). As shown in Fig. 6(b), after the
RMN of about 0.28, L1TV performs a slightly more ro-
bust to noise than IHT. And GradSK outperforms all the
other algorithms in terms of the statistic PSNR. It can be
seen from Fig.6(a) and (b) that RE and PSNR of the
four algorithms can be improved with the increased
RMN. LITV and GradSK expand their advantage on rel-
atively adequate samples.

Table 1 illustrates the average runtime of four algo-
rithms for the noiseless and noisy image sets. The itera-
tive approximation is the most time-consuming for gradi-
ent-based methods, so that the direct reconstruction Ze-
rosFill runs much faster than other three iterative algo-
rithms. More measurements would lead to more storage
and runtimes, but it does not scale linearly with time
complexity as shown in Table 1.

Fig.4 Reconstructed images and RE for noiseless measurements with RMN =40% . (a) ZerosFill, RE=0.116, (b)
LITV, RE = 0.052, (c) IHT, RE=0.034, (d) GradSK, RE =0.025

€14 RMN =40% B JoMERAF: 1Y) F AR SR BAHXT 1222 (a) ZerosFill, #HXT1 25 =0. 116, (b) LITV, fHXJ %2 =0.
052, (c) IHT,#H%t1=% =0. 034, (d) GradSK, #H%fi=# =0. 025
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Fig.5 Reconstructed images and enlarged views for noisy measurements with RMN =40% . (a-0 ~2) ZerosFill,
PSNR =28.75 (b-0 ~2) LITV, PSNR =44.36 (c-0 ~2) IHT, PSNR =50.36 (d-0 ~2) GradSK, PSNR =48.95
5 RMN =40% it Jo M & i) w8 R MR R (a-0 ~2) ZerosFill, A {F M kL =28. 75, (b-0 ~2) LITV,
WEE SR EL =44. 36, (c-0 ~2) THT,UE{E{5ME L =50. 36, (d-0 ~2) GradSK, WE{E {51 L =48. 95

Fig.6 Performance comparison of four algorithms when statistic RE with different RMN, (a) noiseless measurements. (b)
measurements

K6 AFEERAEECE HF LT PR RERTERE LLEL () TEMERFERIMINSIRZESE T, (b) A MERAER (A [R5t i
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Table 1 Average runtime of four algorithms

®1 MOHEENFHEEE

Runtime (sec) ZerosFill HT LITV GradSK
Noiseless + 30% RMN  0.736 1.532 2.683 2.924
Noiseless + 50% RMN  1.245 2.744 4.521 5.013

Noisy +30% RMN 0.749 1.646 4.873 5.230
Noisy +50% RMN 1.232 2.789 7.358 8.106

3 Conclusion

It is a well known fact that the performance of com-
pressed reconstructions is affected by the approximating
sparsity of images and the perturbations in measure-
ments, which is often the case in remote sensing imaging
systems. In this letter, GradSK recovery strategy for
semi-random Fourier measurements is proposed. Semi-
random in Fourier domain for encoding is exploited to
sample randomly with density scaling according to 2-D
function. Most energy concentrated in the main lobe is
preserved, while the random undersamples are employed
in the periphery of K-space. For compressed decoding,
remote sensing images are sparsified by TV. Meanwhile,
the steering kernel estimation is taken as the prior term to
preserve edges. TV and the steering kernel estimation are
encapsulated for decoding in the framework of .1 minimi-
zation. Compared with ZerosFill, IHT and L1TV algo-
rithms , the experiments of the noiseless and noisy cases
indicate that the proposed method offers improvement in
reconstruction quality and more robustness for CRS.
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