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Parametric modelling of the lossy folded waveguide
circuits for the 220 GHz backward wave oscillator
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Abstract: The equivalent circuit model (ECM) of the folded waveguide (FW) in consistent consideration of the
ohm loss on the waveguide wall was established for calculating the cold-circuit phase velocities, interaction imped-
ance and attenuating coefficient of space harmonics of periodic TE,, mode in this slow wave structure ( SWS).
These results were obtained for one-dimensional (1-D) parametric model calculation of the particle-microwave in-
teraction in the 220 GHz backward wave oscillator (BWO). When the frequency of microwave is up to terahertz
regime, the ohm loss caused by surface current on rough waveguide wall is not negligible any more. Further study
shows that the starting oscillation current and output power are intimately dependent upon the loss property calcula-
tion. The ECM about lossy periodic circuits was then developed from the previous loss-free model to give a more
accurate analysis. Three-dimensional (3-D) Eigen mode analysis for the FW SWS was taken to verify the im-
proved model, which shows good agreement. Additionally, based on the improved ECM, 1-D beam wave interac-

tion calculation was conducted which is in good consistency with 3-D Particle-in-cell (PIC) method.
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Introduction

The terahertz science and technology has great ap-
plication of high speed wireless communication, high res-
olution imaging, damage-free biochemistry analysis and
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As a microwave generator,
BWO possesses a desirable power-to-volume ratio, great
convenience of frequency-tuned ability and relative low
noise, making it a stable standard seed power source in
terahertz research area'”’. The advanced plane machi-
ning technologies such as LIGA ( Lithographie, Galano-
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formung, Abformung) and DRIE ( Deep Reactive Ion
Etching) make the FW structure a promising SWS in ter-
ahertz regime, which also demonstrates other merits in
heat dissipation, power capacity, flat dispersion proper-
ty, et

The 220 GHz FW BWO is being developed in the
institution of Applied Electronics of China Academy of
Engineering Physics (IAE, CAEP). The BWO design
comprises of the design of SWS, the beam optical system
(BOS), the power coupler and the mechanical design.
The 3-D PIC method is a precise tool to impose a judg-
ment on the design scheme. Nevertheless, it is source-
consuming and time-consuming in the preliminary optimi-
zation process on the basis of the mainstream computer
configuration. 1-D beam-wave interaction equations were
then derived in our design stage to give a fast parameter
design of the SWS shown in Fig. 1.

|
|

-

Fig.1 The schematic of folded waveguide SwsH
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As a significant part of the 1-D model, the axial
phase velocity, the interaction impedance and the field
attenuation factor of the space harmonics of the periodic
TE,, mode in the SWS should be offered in analytical
methods. For more accurate calculation of the starting os-
cillation current and output power level of BWO, the
consistent equivalent circuit theory in consideration of the
ohm loss was developed from the previous theoretical
method">'. In Part 1, the perturbation of the propagation
characteristics induced by ohm loss was described in de-
tail. In Part 2, the equivalent circuit theory of the lossy
periodic system was demonstrated. In Part 3, the numer-
ical verifications about this method is given.

1 Lossy Wall Estimation

When the frequency increases, the skin depth of
microwave on the metallic wall decreases rapidly, thus
inducing a large ohm loss on waveguide surface. In tera-
hertz frequency range, the skin depth of copper can be
similar to the surface roughness by conventional machi-
ning process, which makes an additional credit for the
power dissipation on the waveguide wall. This phenome-

non can be equivalent to the modification of the conduc-
tivity of the wall material, called the effective conductivi-
ty. The effective conductivity can be obtained through
measuring the |S,, | parameter of the straight uniform

waveguide, or can be roughly evaluated through Eq.

1[6-3] .
o 2

o, = (1 + —(s/h/2)'-6)2’s =

= Re(———) , (1)

1 +jor
where o;s the DC conductivity of the wall material, s is

Wyo

the skin depth of microwave in a certain frequency, h is
the surface roughness of metallic wall, w is the angular
frequency, 7 is the average electron scattering time in
Drude model, which is 13 fs for copper. Eq. 1 is suitable
well for the situation that s is much larger than h in a
good conductor. When s approximates h, the effective
conductivity obtained by Eq. 1 is slightly smaller than the
value measured by preliminary experiments.

The TE,, mode properties of straight rectangular
waveguide with the consideration of the lossy wall is dis-
cussed in a self-consistent method, which is more strict
than perturbation theory'”'. According to the mode-cou-
pling theory, the perturbed TE,, mode is comprised of
the modes in lossy-free rectangular waveguide, shown as

Eq.2";

0

dv, .
& =jBZ1 +—— ,u jwsofv - hE dl
a s ¢ , (2)
i _JPi Jweg
- =gl fE V, - hdl

where V,, I, is the mode voltage and mode current of a
certain coupling mode. B;,Z; is the phase-shift rate and
e;,h; is the
normalized transverse electric and magnetic field of the
mode i, v is the tangential direction of the circumstance
of a certain cross section, k is the wave number of micro-
wave.

When the surface power loss is investigated, the
tangential component of the E-field emerges on the metal-

mode impedance of the unperturbed mode,

lic boundary, shown in Eq. 3"
Wfko
20,
, (3)
where R, is the surface resistance of the lossy metallic
wall, o, is the effective conductivity. With the combina-
tion of Eq. 2 and Eq. 3, Eq.4 is obtained in which the
transverse magnetic field on the cross section is expressed
by unperturbed mode current and normalized magnetic

field .

L,
o =B ”* - joe,R 1+;)21fyh (ih,) di

5

E.=-HR (1 +j),E, =HR(1 +j),R, =

0

0
L2 ZVJV,-hqvt-hidl

q C
. (4)
For the perturbed TE,, mode in straight rectangular
waveguide, the main component of coupling modes is the
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unperturbed TE,, modes in both propagation direction.
Therefore other high-order coupling modes is ignored in
Eq. 4. The normalized magnetic field, phase-shift rate
and mode impedance of TE , mode can be written as Eq.

5:
h = \/Zsm( Tx)x B = (%)2 - (%)2

Z:% (5)

b

where a is the length of broad side of rectangular
waveguide which positioned in the region of x =[0,a],
b is the length of narrow side of rectangular waveguide, c
is light speed in vacuum. Combining Eq. 4 and Eq. 5,
the perturbed TE,, mode in consideration of lossy wall
possesses the modified phase-shift rate and mode imped-
ance, demonstrated as Eq. 6

4R’ K R(1+))k 2b IS

S . I I A\t TR

Biss =B Tlgbz( +j) e —(1 ) nob (1 " )
jBZ+R(1+j)f

Zn. =

=B R4 o

7 e 3b( a +2b)

, (6)
where B, , Z,. is the perturbed phase-shift rate and
mode impedance, 7, is wave impedance of TEM wave,
k, is the cut-off wave number of unperturbed TE,, mode
equaling to 7w/a. It is apparent that near-cut-off case and
cut-off case can also be discussed based on Eq. 6, where
B is a negative imaginary number. Eq. 6 is simplified as
Eq.7 by linear approximation :

R 2b K1k
Bluxx _B_]ﬂ0(1+a kZ) b B
: (7)
7 = wpe 2R,
loss — -
B loss ﬁ loss b

The imagine part of 8,,, is the attenuation coefficient

of the attenuating TE,, mode. The imagine part of Z

loss
means the transverse E-field and H-field are no longer
synchronized. For loss-free bended waveguide, the
phase-shift rate and mode impedance could also be cal-
culated through mode-coupling theory, shown as Eq.
8[10] .
5 - 2

*(7) [

rug

1 2
*(bﬂ)] , (8)
21+ (G L - 5 (8]

is the bend radius of bended rectangular

Z!

where R,
waveguide. According to Eq. 8, the mode-coupling equa-
tion caused by bend effect is rewritten as Eq.9:

av
T dz = B2
dr .. B

= -7ty . (9)
( ! -V

1 2 2
G Ty 5 0B’

Assuming the mode coupling caused by ohm loss
and axis bend are independent and can be linearly super-

posed, the mode voltage and mode current of TE,, mode
in bend waveguide with lossy wall can be demonstrated as

Eq. 10
dV’ . ,

- E = ]Blasleoss]
dl, _ .]Bloss ’ lﬁ
&=z, T

( ! ~HV . (10)

1 2 2
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Therefore the phase-shift rate and mode impedance
of TE,, mode in bended waveguide with the consideration

of ohm loss can be derived as Eq. 11, using linear ap-
proximation :
Blou

Bllm =
*(7) [*

az g

s = L 11 +*(7) [*

zw

+(8)°] an
()]

Equations 7 and 11 will be used to express the
transferring matrix of straight rectangular waveguide and
bended rectangular waveguide with lossy wall in section
three.

Z/

2 Equivalent Circuits Model

The periodic TE,, mode in the lossy FW SWS was
firstly calculated in this Part. A period of the folded
waveguide is selected as Fig.2(a). It should be empha-
sized that the minimal periodic structure along waveguide
serpentine path is the half of the periodic configuration a-
long z direction. It is assumed that the periodic TE,,
mode includes the TE,, mode in straight rectangular
waveguide and bended rectangular waveguide, with both
propagation direction wave existing. The problem to be
solved is to calculate the network transferring matrix of
mode voltage and mode current in this SWS composed by
beam tunnel section( section A) , straight waveguide sec-
tion ( section B), curvature junction section ( section
BC) , bended waveguide section ( section C) , shown in
Fig.2(b). All the parameters are denoted as in Fig. 1.

The transferring matrix in section B could be written

as Eq. 12
¥/ W/
COS(B[()&& 0 ) _jZlmSSin(ﬁ/uQ.si 0)
F, = ,(12
! _ LSI ([))l(m 0) COS(B]USSZO) ( )
Zlum 2
where [, is the length of the straight rectangular

waveguide. The transferring matrix in section C can be
written as Eq. 13

COS(B,losxl] ) _jZlnssSin(Blasxll )
F, = e ,(13
P = S sin(Bud)  cos(Buly) ] (13
loss
where [, is the length of the bended rectangular

wavegulde which equals mp. The transferring matrix of
the junction part BC could be written as Eq. 14"

= [o 1)1(1] . (14)
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on the axial cross section. There are two solutions, re-
presenting the periodic mode wave propagating along ad-
verse directions, whose value is opposite to each other.
For simplification, only properties of wave propagating a-
Axial cross section|p B long + z are discussed in the following content. The e-
2 A lectron beam passes along z axis, thus the complex am-
z plitude of E_ field along z axis is plotted in Fig. 3, inclu-
u ding the phase variation and amplitude variation messa-
I:] ges.
]
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Fig.2 The FW SWS and its equivalent circuit
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In section A, X, and X, could be written as
Eq. 15",

1 - 2 ﬁr3
X, 1 X, 30 b ¢

Z ab,0.4819 w. Z 4B 5, k>
3 +t ) r.(—)
28" 7 a’b 3ab " B
where r, is the radius of the round beam tunnel. The
beam tunnel induces the discontinuity in the FW SWS,
the equivalent circuit is shown in Fig. 2. Strictly speak-
ing, the relative field distribution of TE,, mode can be
drastically distorted near the beam tunnel aperture.
Therefore, the mode impedance of the axial cross section
calculated by transferring matrix should be further re-
vised. For periodic phase shift calculation, the equiva-
lent circuit is reasonable.

As an approximation, the waveguide loss has little
influence on the mode match in junction part BC and
junction part A. The whole transferring matrix of this pe-
riodic structure is achieved by multiplying the transferring
matrix of each section one by one, demonstrated as Eq.
16

F=F,-F,-F,-F,-F,-F,-F,-F,-F,

,(15)

- 10
F4:[ ]2]’FS:[-] 1] ’ (16)
0 1 X,

where F,F; is the transferring matrix of section A. For a
periodic system, the relative field distribution of its peri-
odic modes varies periodically, although the phase and
amplitude may have a certain change. According to the
criterion, the Eigen mode problem of the transferring ma-
trix is solved, shown as Eq. 17
4 _ AV

F[V/Z,]_e ¢ V/Zx] > D)
where @ is the periodic phase shift and A is the periodic
amplitude attenuation factor , Z, is the mode impedance

In(A/Ag)

p-b2!iptb/2
P2 b2y Db z

Fig.3 The phase and amplitude of E field along z axis
€13 A1) i3 2 Sl kg ARSL R B2 S A1

Notice that in common area of beam and wave, the
E_ field is unvaried along z. Since the normalized field
between two adjacent common area is opposite, the peri-
odic phase shift of £, is ® + 7.

The minimal positive period of FW along z axis is
2p. Therefore, the E_ field along z axis can be seen as
the superposition of infinite harmonics by Fourier decom-
position, shown as Eq. 18,

20+27

E.(z) = ZAme;;/' "o Zef%z , (18)
=

where m is the ordinal number of harmonics which can be
—o0 e 3/2,-1,-1/2,0,1/2,1,3/2, -+, + -0, A, is
the complex amplitude of the m-harmonics at z=0. The
phase velocity and attenuation coefficient of harmonics
could be written as Eq. 19,

Uy = op/ (O +m +2mm),a = A/p . (19)

A,, can be solved, in consideration of the orthogonal
characteristic of harmonics, shown in Eq. 20,

" .z D+ A
2pA, = sz(z) e e e dz . (20)
%

According to E field demonstrated in Fig. 3, the 4,
equals zero when m is half integer. When m is a integer,
Eq. 20 is evolved to Eq. 21 by narrowing the integration
interval to [ -b/2,b/2]

2E,
A =
" ®+m+2mm - jA (21)
@+ @ +2mmw —jAb b

— sin( > )

where E; is the complex amplitude of E, field at z =0.
The relationship between E, and transmission power of
the periodic TE,, mode is derived using the definition of

mode impedance, shown as Eq.22 .
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‘EO‘Z ‘Veo‘z 26(2) 2
P. 1 .V 1.7° ab
2 Re(V Zt) Re(Z,)
,(22)

where e, is the scalar normalize electric field at the center
of rectangular waveguide. The coupling impedance of
harmonics is given according to Eq. 21, Eq.22, demon-

strated as Eq.23;

_ 1Al
2P,
. 2
B | | Sa(¢)+7r+22m7r —]A%)
a RC(ZL) (® + 7 +2mm)’

(23)
where S, is the sampling function, m is integer number.
The axial coupling impedance is zero for these harmonics
with half integer m in ECM. The beam tunnel causes the
field leaking into the zero-field-area shown in Fig.3 and
distorted the field distribution of TE,; mode near the ap-

erture. Thus the axial impedance of harmonics should be
modified as Eq. 24",

Kuww = K/ (207 = ()% 2

The electron beam occupies certain space in the
beam tunnel and the field enhances with its position off-
set from the axis. Therefore, the average impedance in
cylindrical beam area is slightly larger than the axial im-
pedance, shown in Eq.25""

Kieann = Ko L (o [ B = C2)7) = B (B = (G

(25)

3 Numerical Verification

For the analysis of the waveguide system with lossy
wall, the ECM considering the loss effect in a self-con-
sistent way described above can be more practical than
previous loss-free system by letting the conductivity of
metallic wall to a value obtained by Eq. 1 or experimental
method in terahertz situation.

By calculating the Eigen mode of a 3-D numerical
model loaded with periodic boundary conditions, the res-
onant frequency and field distribution can be gained. It
should be emphasized that the FW periodic system has a
minimal positive period ( MPP) of 2p along z direction,
shown in Fig. 4. If the perfect electric or magnetic
boundary is launched at periodic position in beam tunnel
shown in Fig. 4, the MPP of FW system can be seen as p
along waveguide serpentine direction though the MPP of
FW SWS. Based on this assumption, the compete 2p pe-
riodic solution can be pieced together by the solution of
FW system of length of p, just as the above ECM and
some numeric method"”’. In the below simulation, the
whole 2p periodic FW system is adopted directly.

Then the material of the wall can be set for the qual-
ity factor of the resonant mode using perturbation meth-
od. According to definition of the quality factor, the

Possible
Perfect E or M

boundary gy
Periodic
boundary |
For 2p along zj

¥ Serpentine.
direction

Fig.4 3-D numerical model for FW SWS
4 478 S8 I 2 H ) = B A Y

whole power loss on the ohm surface could be written as

P,. =2afW/Q , (26)
where W is the time-average energy stored in the cavity,
Q is the quality factor calculated by numeric simulation.
This solution amounts to calculate the periodic phase shift
value, mode field distribution and quality factor at cer-
tain frequency. By sweeping the periodic phase shift val-
ue, the dispersive characteristics of FW SWS is demon-
strated.

The parameters of SWS are set as the optimized re-

sults for 220 GHz FW BWO, shown as Table. 1.

Table 1 Parameters of the SWS for 220 GHz FW BWO
F1 220 GHz i B HBREENBELESE
a/mm  b/mm  ly/mm  p/mm  r/mm 1, /mm m

0.73 0.16 0.53 0.39  0.095 0.08 2

o Q'm’!

5.8 x107

Periodic boundary conditions are applied in z-direc-
tion. If the periodic boundary conditions with phase shift
2® are launched in this numerical model, there will be
many Eigen modes to be solved. Only transverse TE,,
mode with consecutive phase shift 2d along serpentine
direction is used to be further analyzed. It is assumed
that the m-harmonic possesses consecutive phase shift of
2@ + 24 +4mm along z axis, where m =-c0 -+ -3/2 -
1,-172,0,1/2,1,---. According to the simulation results
of the resonant frequency f, E. distribution along z and
the transmission power P_, Eqs 20, 21, 23 and 24 could
be adjusted to approach the phase velocity and coupling
impedance of the harmonic of the periodic TE,, mode.
The loss effect is considered using the perturbed power
dissipation caused by the surface current calculated in
loss free situation demonstrated as Eq.27;

y = 2mfp
Mmoo ®+a+2mm

P
A, (r,0) = ;?IE( r,0,z) eﬁli'z"meﬁ%zdz
-P
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A, | lated by numerical method and equivalent circuit theory
K, (r,0) = 2(d + 1+ 2mm) P, is plotted in Fig. 6 ( a): And the axial coupling imped-
o am ance and average coupling 1mped§nce.were also calculat-
frdij"l(r,B)dG ed by these two methods, shown in Fig.6(b).
K{wer ( rm ) = ‘ ‘ 2
’]TrYTI
1 loss 1 PZQ
=A/p == —In(1 - —=) = —In(1 -
a=Ap == =0 = =)

. (27)

Notice that the space harmonics with m of half inte-

ger number emerges. It can be proved these categories of
harmonics have exactly zero axial coupling impedance
when the perfect electric or magnetic boundary is
launched at periodic position in beam tunnel shown in
Fig. 4. In our numeric model, the axial coupling imped-
ance is much weaker than its adjacent space harmonic
with integer m. That is why these space harmonics are
often neglected in conventional analysis. The distribution
of coupling impedance of space harmonics with m =-2 -
1,0,-0.5 in FW system around 220 GHz is demonstrated

in Fig. 5.

Fig. 5 The distribution of coupling impedance of some
space harmonics in FW system at 220 GHz

KS 220 GHz #r& i R G0 — 803 (a3l a9 H B b
oAt B

The result of the numeric model is obtained after
mesh convergence analysis, in which the total number of
the mesh cells is about 1 million. Large numeric calcula-
tions show that not every space harmonic has a proxi-
mately round symmetric distribution of coupling imped-
ance and the space harmonics with a half integer number
always have weak axial coupling impedance. Neverthe-
less, the average coupling impedance of an ideal round
electron beam calculated as Eq. 27 is always a considera-
ble value for all space harmonics. For a normal size of
FW device operating between 100 ~ 800 GHz, the syn-
chronized voltage for space harmonic with m =-2 and m
=0 is about several tens of kilovolt, which can be con-
veniently realized by a conventional compact thermo elec-
tron gun. Therefore, most FW TWT selects harmonic
with m =0 as operating harmonic and FW BWO selects
harmonic with m =-2. The phase velocity and the attenu-
ation coefficient of backward harmonic wave were calcu-

Fig.6 phase velocity, attenuation coefficient and coupling
impedance calculated by two method

Bl 6 WIRh i iR L , S0 2R ORI 5 BELAT

For 220 GHz FW BWO, backward wave with har-
monic number of -2 is adopted as the synchronized har-
monics for which the comparison is put forward.

The discrepancies of phase velocity, the attenuating
coefficient and the axial coupling impedance calculated
by two methods are less than 1% , 10% , and 15% , re-
spectively.

Further calculation shows that, the model error of
the equivalent circuits increases when the higher harmon-
ic number wave is under analysis. For forward harmonic
wave of m =0 used as synchronizing wave in FW trave-
ling wave amplifier, the discrepancy of phase velocity,
coupling impedance and attenuating factor calculated by
these two methods could be confined to 0.5% , 10% and
10% respectively.

It should be emphasized that loss-free FW SWS al-
most has the same dispersion characteristic and coupling
impedance as the lossy system, whose discrepancies are
respectively less than 0.01% and 0. 1% according to an-
alytical calculation. The key point in our self-consistent
model is to calculate the attenuating factor, which is neg-
lected in loss-free model. This also tells us the perturba-
tion method adopted in numeric simulation is reasonable.

Using numerical model, dispersion characteristics of
periodic TE,, mode can also be calculated. Due to its
weak axial E, field, TE,, mode can hardly interact with
round electron beam efficiently. The dispersion proper-
ties of TE,, mode and TE,, mode are shown in Fig. 7 to
give a comprehensive understanding.

Both linear and nonlinear model of 1-D particle-mi-
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Fig.7 TE,, and TE,, modes in FW periodic structure
K7 B S A P i) TE, Fl TE, KX

crowave interaction was established to design the 220
GHz FW BWO'"™' | with cold wave properties calculated
by the equivalent circuit theory described in Part three.
Both the loss-free SWS and the lossy SWS with the same
dimension demonstrated in Table. 1 was used to calculate
the backward wave oscillation properties with the same e-
lectron beam injection condition. The PIC model with the
consideration of the lossy wall was also established with
commercial computer code to give a comparison, shown
in Fig. 8. The axis magnetic field is about 50 times Bril-
louin value to confine the beam a 1-D like movement.
The effective conductivity was calculated as Eq. 1, where
copper metallic wall with surface roughness of 0.2 mm is
studied. The mesh convergence analysis shows that the
numeric result is convincible, where several millions of

mesh grids are tested. The investigation result is shown
in Fig. 9.

Fig.8 The PIC model of FW BWO
K8 Prddl SR B i PIC L

From the comparison data, it is proved that the
backward wave oscillation property is obviously different
whether the ohm loss in the waveguide wall is considered
or not. And the data calculated from the equivalent cir-
cuit theory satisfies the PIC calculation well when the

Fig.9 The oscillation properties with or without ohm
loss

B9 25 AN R KRR G A Bl I v Ak

same lossy wall condition is used. That is exciting evi-
dence that our modified equivalent circuit theory in con-
sideration of lossy wall gives a good description of the

cold wave properties of FW BWO.
4 Conclusion

The dispersion and attenuating properties of the 220
GHz FW SWS was discussed both in theoretical and nu-
merical method. As a self-consistent model in considera-
tion of lossy wall, the modified equivalent circuit theory
fits numerical simulation well.

The accuracy of the loss calculation greatly depends
on the accuracy of value of the effective conductivity,
which would be better gained through experimental meth-
od'"®!. Since the skin depth of microwave into copper is
about 0. 14 pm, the FW SWS with surface roughness of
0.2 um seems the limitation criterion of surface finish,
although the tested effective conductivity is not so bad as
the theoretical prediction.

Traditional machining work including milling, lath-
ing, lapping and electric discharging operation can only
guarantee the surface roughness of 0. 1 m with high pre-
cision. To improve the surface finish, UV-LIGA is con-
sidered to control the roughness to dozens of nanometers.

The 220 GHz FW BWO have been designed and the

components of proto-type tube are under machining.

References

[1]SIEGEL P H. Terahertz technology [ J]. IEEE tran. Microw. Theory
Tech, 2002, 5(3) :910 —928.

[2 ] GALLERANO G P, BIEDRON S. Overview of terahertz radiation
sources[ C]. Proc. of the 2004 FEL conference , Trieste , Italy ,2004.
[3 ] BHATTACHARIJEE S, BOOSKE J H, KORY C L,et al. Folded
waveguide traveling-wave tube sources for terahertz radiation [ J].

IEEE. trans. on. plas. Sct, 2004 ,32(3) 1002 — 1014.

[4]JUN Cai. Study of W-band folded waveguide slow wave structure[ D].
Doctorate Dissertation in Shandong University ,2006.

[5]BOOSKE J H, CONVERSE M C, KORY C L, et al. Accurate para-
metric modeling of folded waveguide circuits for millimeter-wave trave-
ling wave tubes[ J]. IEEE. Trans. on Plasm. Sci, 2005, 52(5) :461 —
462.

[6 ]HFSS12.0 online help[ R]. ANSOFT Corporation,2009.

[7]ZHANG Ke-Qian, LI De-Jie. Electromagnetic Theory For Microwaves
and Optoelectronics| M]. Beijing; Publishing House of Electronics In-
dustry,2001,99 —101.

[8JKIRLEY M P, BOOSKE J H. Increased resistance of rough copper



5 101 CALI Jin-Chi et al;Parametric modelling of the lossy folded waveguide circuits
. for the 220 GHz backward wave oscillator 527

surfaces at terahertz frequencies: 15" TEEE Int. vacc. elec. conf,
Monterey , California ,2014 [ C]. US: Institute of Electrical and Elec-
tronics Engineering,2014.

[9]HUANG Hong-Jia. Principle of Microwaves[ M]. Beijing: Publishing
House of Science ( 8% % 5% , WU R IR , db 52 . Bl2g H bkl ) ,1964.
[10]MARCUVITZ N. Waveguide handbook[ R]. Stevenage, U. K. ;Pereg-

rinus, 1986.
[11]Hutter R G E. Beam and Wave Electronics in Microwave Tubes[ M |.

New York: Van Nostrand,1960.

[12]CAI Jin-Chi, HU Lin-Lin, MA Guo-Wu, et al. Theoretical models for
designing a 220-GHz folded waveguide backward wave oscillator[ J ].
Chin. Phys. B. 2015,24(6) :060701.

[13]KIRLEY M P, BOOSKE J H, Study of the effect of surface roughness
and skin depth on the conductivity of metals at 650GHz[ C]. 13"
IEEE Int. vacc. elec. Conf. , Monterey, California,2012. US: Institue
of Electrical and Electronics Engineering,2012.





