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A novel unified multispectral statistical algorithm
for detecting dim point target in single frame IR image
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(Institute of Information and Control, School of Information and Control,
Shanghai Jiao Tong University, Shanghai 200030, China)

Abstract. Target spectral signature is modeled firstly based on the thermal radiation theory and a multispectral
background suppression approach is given. An experimentally justified assumption is made that the probability den-
sity functions (PDFs) of the feature vector can be modeled as Gaussian random process, and then a new unifying
radiation intensity and radiation spectral signature ( URIS) detector is developed. Finally, performance analyses
based on a set of multispectral imagery and receiver operating characteristic (ROC) curves are presented. Accord-

ing to the experimental results, the URIS method can successfully detect dim point target in rather low signal-to-

noise condition.
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Introduction

During the past few years, analysis of hyperspectral
and multispectral imagery has played an increasingly im-
portant role in many fields, such as: medical applica-
tion" -~ , environment monitoring ~", crop health estima-
- [3] (4]
tion"”' | targets detection .

In multispectral images, spectral signature is the
scientific descriptions of the detectable and recogniza-
ble infrared wavelengths. It represents the infrared ra-
diation characteristics and reveals the intrinsic property
of target and background. Utilizing such wealth of
spectral and spatial information greatly improves the
performance of the target detection and recognition,
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expands the traditional detection technology to a new
frontier.

Spectral target detection and recognition algorithms
are broadly classified into spectrum matching algorithm
and anomaly spectrum algorithm. The main difference
between the two approaches is that if there is any prior
information. (i) Spectrum matching approach deter-
mines whether a match exists between the reference sig-
nature and the spectral signature of the image pixels.
(ii) Anomaly spectrum algorithm identifies the scene
pixels as the potential targets whose signature do not fit
the background model.

Reference'™ points out that, multispectral technolo-
gy has become the main development trend of the infrared
detection technology in the future. The pioneer work in
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this field can be traced to 1985; Margalit and Reed put
forward a constant false alarm rate (CFAR) adaptive tar-
get detection algorithm using correlated images in Ref.
[6]. In 1990, Reed and Yu X. proposed an adaptive
multiple-band CFAR algorithm to detect targets with un-
known spectral distribution in Ref. [ 7]. Harsanyi pres-
ented orthogonal subspace projection (OSP) and con-
strained energy minimization ( CEM ) algorithms in
1994'%" . The most basic and prevalent algorithm for mul-
tispectral imagery target detection is so called spectral
angle mapper (SAM) proposed by Richards and Jia in
1999 ). SAM algorithm is convenient in target detection
application ; however, it only performs well for the signa-
ture of target distributed separately with small variance.
Reference [ 10 ] proposed an adaptive spectral matched
filter ( ASMF) for radar target detection using antenna
array. It is remarkable that most of the present multi-
spectral or hyperspectral algorithms are applied to the re-
mote sensing and medical applications, in which non-
strict demand for real-time and computation complexity
are required. Thus, a target detection algorithm based on
multispectral imagery with mathematical simplicity, tract-
ability and real-time performance for military application

is still a hot issue' "™,
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The outline of this paper is organized as follows. In
Sec. 1 we present the infrared radiation characteristics of
targets and model spectral signature based on concepts
and laws of thermal radiation. Sec. 2 describes data
cube and image model. In Sec. 3, background removing
processing is presented firstly, and then we described the
formulation of target detection problem. Finally URIS
maximum likelihood ratio statistical decision detector is
proposed. Sec. 4 presents a series of simulations to dem-
onstrate the conclusion drawn in Sec. 5.

1 Spectral analysis

In this section, spectral models of target are ana-
lyzed. Infrared radiation of aircraft targets can be gener-
ally classified into three parts: Final nozzle, Aircraft
skin, and Tail flame.

Tail flame radiation is a kind of selective banded
spectrum radiation concentrating in 3 ~5um and is negli-
gible in 8 ~ 14 pm. Tail flame radiation characteristic al-
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ways changes along with the flight altitude, working
states of engine, etc.

Final nozzle is a cylindrical cavity heated by ex-
hausted gas and can be seen as a gray-body with emissiv-
ity £, =0. 9 in engineering calculation. The spectral ra-
diant existence of the final nozzle is modeled as ;.

Mn, = e,M,, (T, ,\) , (1)
where, (i) :T, final nozzle temperature; (ii) A wave-
length; (iii) M,,,: Planck’s black body function;

Surface temperature is determined by air tempera-
ture, airflow pattern and flight Mach number, and can be
calculated with the following function;

T, = 7,1 +k(72;1)Ma2] . ()

where, T, is surface temperature, T is air temperature,
k is recovery factor, 7 is ratio of heat capacity at constant
pressure and constant volume, usually y =1. 3, Ma is
flight Mach number. Skin thermal radiation can be sim-
ply modeled as a gray-body with emissivity &_, the spec-
tral radiant existence is described as follows:

Ms, = &M, (T ,A) , (3)

In conclusion, final nozzle thermal radiation and
aircraft skin thermal radiation can be approximated as
gray body continuous spectrum radiation, and the radia-
tion of tail flame is negligible in 8 ~ 14um. Therefore,
the aircraft target radiation can be described as a stable
gray body radiant model in long-wave band. In a differ-
ent observation angle, the spectral signature of the air-
craft will be different. Then, aircraft targets are consid-
ered as Lambert’ s law radiator whose infrared radiance
is :

I = M cosf,cost,, AA/7 , (4
where, M =[Mn, + Ms,dA ,0,, is azimuth, 6  is angle of
pitch, AA is target area.

First of all, final nozzle radiation is the main com-
ponent when observed from the side of rear. Then,
when observed from the front, because of the shelter by
the aircraft itself, it is weakened to a rather minor con-
stituent. Finally, skin thermal radiation has stable char-
acteristic of all-directions. The spectral curves of final
nozzle radiation and skin thermal radiation and in 8 ~ 14
pm band are shown respectively in Fig. 1 with the at-
mospheric temperature of 288 K, flight altitude of 5
km, angle of pitch 15°, the speed of 1Ma and different
0,.. Considering the spectral curve distortion caused by

az

atmospheric transmission, the target spectral signatures
in different observation angle are modeled as shown in
Fig. 2.

Figures 1 and 2 indicate that target signatures varied
along with the observation angle which determines the
target observation area and radiance emitter. Thus, tar-
get spectral curve is merely determined by the kinds of
observed radiation emitters and observed target area can
only affect the radiance intensity. Thus, based on the
difference of observed illuminating source caused by ob-
servation angle , normalized target spectral signature mod-
els are given in Fig. 3.

2 Date cube and image model

Multispectral data provides not only 2-D image, but

also the information in spectral dimension. A single
frame is extended to an image cube or data cube with the
third dimension specified by spectral wavelengths. L is
the number of wavebands for the spectrum, for a pixel,
its spectral vector is;

X = [xl Xyt X xL:I s (5)
where x, is spectral irradiance of [ th waveband.

In IR images, pixels can be expressed as:

f=t+b+n , (6)
in this model, f, ¢, b and n are the spectral signature of
pixels, targets, background and noise. Similar to the tra-
ditional Gaussian white noise model, multispectral noise
can be presented based on a multidimensional Gaussian
distribution. Considering the band-to-band correlation, a
first order Markov model is used to generate the covari-

ance matrix defined as follows:
L-1

1op gt
C=0R=0"F ! . p . (D)
p o p 1

R is Toeplitz correlation matrix defined by 1st order
Markov model p is the band-to-band correlation coeffi-
cient o indicates the dispersion of the noise and the var-
iability of the targets signature, thus varying o yields
different spectral quality.

3 Target detection algorithm

Based on the data cube structure, an integral target
detection algorithm scheme is proposed as follows: First-
ly, suppress background adaptively. Then, extract gray
information and spectral distribution information. Final-
ly, detect targets with detection algorithm proposed in
this paper. It is assumed the target information is partly
known as prior information, and target signature is mod-
eled by spectral analysis.

3.1 Background removing

Background suppression is aimed at removing slowly
varied background which refers to the standard deviation
of subimage o is small, specifically o, <10 and the
subimage is 8 x 8 pixels in this paper. In background
suppression process, our motivation is mainly based on
the conclusion that background always performs a signifi-
cantly correlation in spatial and temporal. Since a single
frame image becomes a data cube, thus, the traditional
single frame image filter expands to filter bank, each fil-
ter in the bank corresponds to a data layer of the data
cube, and processing in parallel. B

Defining h; as spatial mean value and h,' temporal
mean value of a sample pixel in the [ th spectral image
(l=1,2,:-L), if the area viewed by the pixel is
background, as known well, the gray intensity of a
pixel h, can be regarded as a linear combination of k)
and h;.

hy = a,h; + Bh; B - , (8)
where, «,,B, are the weights of h; and h;.

Defining h, as the residual value after background
suppression, namely,
hy = hy = osh; = Bk , (9)

then, the background suppression problem transforms in-
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to optimal estimation problem which can be illustrated by
the expression ;
0,]

0 = [01 0,
H=[H H - H] , (10)
Z=1[h h, - h/JT

where ,H, =[h} h!], 0=[a,,B8,]". Obviously, this is

a typical linear least square problem, we can obtain:

6 =(HH)"HZ
Z =Z-HHH)'"HZ , (11)
Now, the background is suppressed adaptively and the
infrared image model (6) is converted to 12 which shows
that the residual infrared imagery cube model is now
composed of target and noises.

f=t+n=N,(,C) , (12)
3.2 Formulation of the problem

Multispectral not only enriches the information but
also leads to the calculation complexity and the informa-
tion confliction. To solve this problem, multispectral in-
formation is projected to two fields: radiation intensity
and spectral distribution.

In this paper, the standard spectral model could be
initialized by the target radiation model described in Sec.
2, as follows .

R=1[r r, -1y 1] , (13)

As stated above, the multispectral gray vector of a
pixel is described as X, spectral angle between X and R
denotes the spectral similarity.

R-X
¢(X,R) = arccos ————— , (14)
IR~ I X]
Combining X and ¢ (X, R), the feature vector of
sample pixel is defined as follows;

L ™

V=[2 x ¢ ., (15)

Generally, target detection and recognition is a typi-
cal two class problem, the two hypotheses that the detec-
tor must distinguish are given by

Hi‘izovl:vz [h (P]T’EL(V‘HL)

—(m, m )" . (16)
where, H, is noise-only hypothesis, H, for target present
hypothesis, m, ‘and m_are the mean value of the intensi-
ty and spectrum similarity ;

3.3 Target detector

In URIS muliispectral statistical detection algo-
rithm, the feature vector of a sample pixel is built as Eq.
15, and then maximum likelihood ratio ( MLR) is used
to accomplish detecting and recognizing, defining the
likelihood ratio test as:

P(VIH) P(Hy)Ap-A
logR = log - O(M) ,(17
iy A,
where, A, is loss function and A,; = A, =0.

Figure 4 shows the probability density (PD) distri-
bution of feature vector of the residual image with differ-
ent p. Evidently, this appears approximately Gaussian
when p is relatively small and increased p leads to the
distortion to the shape of PD distribution. This phenome-
non is derived from the constraint on the spectral correla-
tion of p. For mathematical tractability, the samples dis-
tribution is approximate to normal distribution. Respec-
tively, the PDFs when the target is absent and present:
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2
hence, the test statistic in Eq. 17 reduces to

L(V) =
S LORE) M (V-Ey)-(V-E) ™M} (V-E)) |

, (19)
def; P = [h"”ho] S = [mh;mho] . (20)

-m
¢) () ®1 (20]

Substitute Eq.20 to Eq. 19 and restated it as;
L(V) = %(PTM;IS +S'M!'P)

Pf<V>:mexp{-iw-E,»TM;%V-En} . (18)

- %( P'M!'P-P'M, P)- %STM;‘S ,(21)
where, S" M;'S is a constant scalar and is irrelevant to
the recognizing sample pixels, P' M;'S and S'M;' P are
equivalent scalar.

Hence, the maximum likelihood ratio is related to
the first two terms of and the test statistic further reduces
to:

n = %(PTM'IIS +S'M!'P)- %(PTM;‘P-PTM;P) ,(22)
Besides, the expansions of the two terms are given
as follows:
Defining matrix N and  as:
- N, N 8 0, ©Q
N = M' = 11 2.0 =M = 1 12 ,(23)
] [NZI sz] ¢ ’ [QZI 022]
hence, substitute Eq. 23 in to the first term of Eq. 22,
we get

%(PTM;IS +S'M!'P) =
Ny (mhl_mho) [ (h‘mho) + N-111N21 (@'m%) ]
+ N22<m¢|_m¢o) [ (Qo'mwo) + Néllez(h-mh()) ]
Using the fact that.
N;sz = 'K;LI];IIK/ ;Nillle = -K!

¢ ¢1<P1Kh1¢1

Then, Eq.24 can be expressed as:

,(24)
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%(PTM?S +S'M'P) =

Nll ( mh] _mh0> I: (h-mho ) -K;pllgalKhlga] (¢-m¢0> ]

+ N22 ( m#’] _m<p0) [ <¢'m¢0 ) -K;Llﬂl]Kh]QD] (h-mho) :I ) (25 )
Similarly, the second term of Eq.22 can be written

as:

%( P'M; P-P'M P) =

1 .
LN Chom, ) Chem, )KL K, (oo )]
+ N22 ( go-mwo ) [ ( ¢-m¢0 ) -K;lethhsga_\, ( h-mho ) :I
1
-Qu ( h_mh(, )[( h-mho ) 'stmPoKho«vo ( e-m,, )]
-0 ( p-m, )L( p-m,. ) 'K;;,loh(,KhmpO ( h'mh,o )1 ,(26)
Equation 25 and 26 is the foremost prominent result
in this paper; it reveals the procession procedure of the
feature vector for target recognition. For a pixel to be
made target decision, the mean value of the related local
noise should be removed, and then the gray information
and spectral information are filtered and subtracted mutu-

ally.
It is also well known that the LMSE of X-u_ given Y-

w, is defined by X-u, = K K, (Y4 ), thus the follows

description is obtained.
%(PTM‘II S-STMIP) =
= Ny (my o, )T Chom, ) -Chem, )]
# No(m, ) [ (g-m_)-(¢m_ )]
%(PTM;IP—PTM(')IP) =

,(27)

3N Chem, [ (hem, )= Cheom, ),

+ Ny (@-m, ) [ (p-m, )-(¢-m_ )]

-y Chm, ) [ (hem, )-(hem, ), ]
Qn(em, ) [ (gm )-(e-m )o]l . (28)

Thus, substitute Eq.27 and 28 to Eq. 22, the target
decision expression can be presented as:

n=mnt+tn +tn +n, , (29)
where ,

7= Nyl (my m, )= - Chem, )1 (hom, )-(hem, ),

M = Vol (mom )= (em )1 (em )-(gm_ )]

200 (hem, ) [ (hem, )-Chem, )]

3

n = 2 0alem ) (em )-(em )]

Each term in the algorithm description Eq. 29 is first-
ly whitened followed by subtraction of the mean value and
optimal LMSE. This therefore is an alternative interpreta-
tion for the contribution of the spectral distribution infor-
mation to target detection and recognition.

4 Simulation

In this paper, the input data is raw multispectral
cube with the spatial resolution of 256 x 256 pixels and

the spectral resolution of 13 bands in 8 ~ 14 pum with an
interval of 0.5 pwm. In practice, due to the limitation,
it is difficult to obtain multispectral imagery that contains
real targets in low-probability target detection scenarios.
An alternative is inserting simulated targets in acquired
real spectral imagery with p =0. 85. We simulate the
diffraction effect in the process of infrared system ima-
ging and image an infrared point target as a dispersion
spot, called “Airy spot”. Moreover, the size of the Air-
y spot r is determined by the wavelength of the target ra-
diation A, and the aperture of optical system D as fol-
lows .

2.2r = 1.2A,./D , (30)

As above, the image of point target images is a con-
vex hull. Figure 5 illustrates the shape of an inserted dim
point target which occupies 8 X 8 pixels after dispersion
in our simulation.

Fig. 5 Dispersed point target
5 WRHUS HARs R

Fig. 6 Original image
Kl 6 It Pl 5o 114

Generally, SNR is used to evaluate the image quali-
ty and describe the difficulty of dim point target detec-
tion. In this paper, for multispectral image assessment,
SNR_image evaluating image quality is denoted as

L L
SNR_image = >, |54, [/ J Yoty o0, (31)
i=1 i=1

i<j
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Fig. 7 Partial enlarged image
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Fig. 9 Target detection results of a single frame with dif-
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where ,u,. and o, are the mean value and standard devia-
tion of the background in the neighborhood around the
target, p is the band-to-band correlation coefficient de-
fined in Eq. 7.

In addition, for multispectral imagery, target signa-
ture presented as ¢t = (i, ,t,,**,t,), and then SNR for e-
valuating the image quality in spectral perspective is de-
fined as follows:

L
SNR_sptra = /%th/a . (32)
i=1

where, o is defined as in expression and varied o to ad-
just spectral variability, namely spectral quality.
In this paper, simulation images sequence con-

tains two inserted dim point targets with a background
including varying clutter and huge mass of clouds in a
cloudy weather condition. Figure 6 gives an example
frame to be processed. It is an original multispectral
infrared image at wavelength 9 pwm which corresponds
to the strongest target radiation. As shown in the fig-
ure, targets are so small and dim that almost cannot be
distinguished. Figure 7 shows the details of the en-
larged image, dim point targets in the shape of convex
hull are visible.
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The goal of background suppression is removing
slowly varied background to enhance the image quality.
Figure 8 shows the SNR_image enhancement of multi-
spectral imagery sequence and corresponding signal-band
long-wave images in 100 frames. The result indicates that
the background suppressing improves the images quality
effectively. Besides, multispectral background suppres-
sion has a superior performance for ordinary long-wave
images.

Our methed was compared with MLR method based
on only radiation intensity (RI) and SAM maximum like-
lihood ratio statistical approach (SAM). Considering the
tradeoff between algorithm performance and mathematical
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tractability a large spectral image of 256 x 256 pixels was
divided into 1024 small 8 x 8 pitches. Then, estimations
for mean vectors and covariance matrix were made in
each subimage.

Firstly, target detection results derived with the
there methods are shown in Fig. 9. It illustrates that
the performance of URIS is much better than other
two algorithms. These results demonstrate that intro-
ducing multispectral information to target detection is
significantly to improve the detection algorithm per-
formance.

Secondly, Fig. 10 shows the false alarm and miss a-
larm number statistical results of the applied methods,
and reveals that URIS method effectively decreases false
alarm (about 99. 87% for RI and 99. 60% for SAM)
without reducing detection probability. The real-time
performance at MATLAB environment with general-pur-
pose computer is evaluated in Table 1. The time consu-
ming of URIS increases in an acceptable range where 15.

82% for RI and 22.03% for SAM.

SNR_sptra =20 db

Fig. 12 Spectral variability with different SNR_sptra
B2 ARG AR M X i

For the purposes of testing the ROC performance,
100 targets were inserted in each of frames and its spec-
tral signature is “corrupted” with different SNR _sptra.
Figure 12 shows spectral variability of the corrupted tar-
gets with different SNR_sptra. The randomly selected lo-
cations of the targets are fixed for all scenes. The ROC
curves of different methods with different spectral varia-
bility and image quality are shown in Fig. 13 and Fig.
14 respectively. As shown in Fig. 13, SAM is sensitive
to spectral variability aggravation. However, our algo-
rithm still performs well when spectral signature is highly
corrupted. As Fig. 14 shows, when SNR_image was de-
creased, RI results an apparent deteriorating performance
over detection target. By comparison, our algorithm
shows high performance in resisting image quality degra-
dation.

Finally, Fig. 11 shows the impacts of loss function
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on algorithm performance. As the A A, increasing, the

false alarm drops sharply. However, for RI and SAM
method, the detection probability is also decreasing.
URIS shows superior performance on detecting targets
and achieving balance between restraining false alarm
and detecting targets compared with Rl and SAM meth-
ods.

5 Conclusions

Based on the previous experimental results, the fol-
lowing conclusions can be drawn from simulation.

First and foremost, URIS performs best among the
three methods, reduces false alarm rate greatly without
losing detecting probability. This result interprets that in-
troducing spectral information and combing with radiation
intensity information are helpful to improve the detection
performance.

In this paper, multispectral information is projected
to two fields to solve the problem of mathematical calcu-
lation and information conflicts. Besides, unifying radia-
tion intensity and radiation spectral signature make the
two information compensate mutually, thus the method
perform well against the degradation of spectral variability
and image quality.

Finally, the approach presented in this paper im-
proves the single image detection performance effectively
with mathematical simplicity and tractability. Tt is signifi-
cant to establish targets chains to achieve the goal of sta-
ble tracking in , and the risk of calculation explosion in
target tracking due to the unreliability of single frame de-
tection is reduced.
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