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Tunable broad stop-band filter based on multilayer metamaterials
in the THz regime
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Abstract: A periodic multilayer structure with metal and dielectric layers is proposed to obtain a broad stop-band
filter. The influence of three factors (the number of the metal layer (n), the metal layer and the dielectric layer)
on the stop-band and central frequency of cross ring resonator (CRR) filter has been investigated. Simulated results
indicate that the stop-bandwidth can reach to 2. 2THz. Moreover, The stop-band and central frequency can be mod-

ulated by selecting appropriate n or dielectric layer, but it is not sensitive to the metal layer.
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well in the THz region because of their resonant band-
Introduction width is too narrow, which significantly limits these stop-

Metamaterials have attracted a great deal of attention
during the past few years, because of their potential ap-

plications, including perfect absorbers''' |  perfect

lens'?! | imaging'®’ | invisibility cloaks'*’ | sensing"! and

filters'®’. These metamaterials are typically made up of
yp y p

two or more structured metallic layers which are separa-
ted with dielectric layers, either free standing or support-
ing by a suitable substrate. Among these devices, stop-
band filter in the THz regime attracts a great attention'’
which is designed to ensure high tolerances well to fre-
quency operations or filter specific frequencies of wave

propagating. However, many stop-band filters can’ t scale
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band filters application demanding for effectively filtering
broadband radiation. Recently, a novel design for a tun-
able broad stop-band filter has been presented®’. There
are three resonance modes in a stop-band. However, it
must use three or more metal layers to get a 1. 0THz
bandwidth, which is not conductive to miniaturization
and cost reduction. It is important that designing and
prov1d1ng a filter with a broad stop-band in the THz re-
gion. For instance, a filter can be fabricated practical,

with high- efflClency broad stop-band, would be found ap-
plications in screening of radiant energy, using as the
terminator of energy harvesting devices, and so on. Moti-
vated by these reasons, a cross-circle structure is de-
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signed whose stop-bandwidth and central frequency can
be tunable in the THz region. And there is only one reso-
nance mode in stop-band, just use two metal layers to get
a 1.4 THz bandwidth. The filter can be operated to se-
lect bandwidth in the THz regime and provide a desirable
filtering method.

1 Design of CRR Structure Filter

A unit cell of the cross ring resonator (CRR) is il-
lustrated in Fig. 1. The multilayer microstructure con-
sists of two aluminum layers and one dielectric layer.
The dielectric layer is selected as SU-8. And dimensional
parameters are; P = 65pm, L=60pm, R =12pum, w =
26pm, ¢, =0.1,s, =12.

Fig.1 (a) Top view of a unit cell of the CRR structure fil-
er; (b) side view of the unit cell of the CRR structure filter
for n =2. The yellow part is metal layer, and the grey part is
dielectric layer

K1 (a)CRR 45t Honi P, (b) CRR Z544 S on i) il
M (LL =2 S fl)  Horp G A &R Z KGR A
sz

To find out the potential physics behind the stop-
band, the commercial software Ansoft HFSS13. 0 is em-
ployed. In our simulation, the dielectric constant of SU-8
is'”! and the Drude model is used to describe the dielec-

tric constant of the aluminum layer;

2
w

e(w) =1 -—F+L— , (1)

0 - wy),

here, w, =1. 37 x 10"°s ™" is the plasma frequency and

vy =9 x 10" 57" is the collision frequency'’ respec-

tively. The aluminum layer is perfect electric conductor
for metal in our simulation. The electric field is in the y
axis(E) and the magnetic field is in the x axis(H). The
polarized wave propagates along the z axis(k). Two ide-
al electric conductor planes have been used on the
boundary normal to the y axis and two ideal magnetic
conductor pldnes has been utilized on the boundary nor-
mal to the x axis''"). The model is tested in air with light
incident to the CRR structure.

2 Simulated results

Simulated transmission spectra with different number
of aluminum layers (n) are shown in Fig. 2. A stop-
band dip is observed in the transmission spectra with n
increasing. For n =1, the stop-band dip locals at f, =
5 THz, which corresponds to a single resonance model.

The bandwidth of the dip is Af=0.11 THz. Here, Af is
the full stop-bandwidth and f; is the resonance frequency
of the stop-band. A typical stop-band filter is obtained.
However, the bandwidth of the filter (n =1) is too nar-
row to prevent the filter from being used for filtering
broadband radiation effectively. In order to expand the
stop-bandwidth, n is increased. As shown in Fig 2(b)
~ (e), for n =2, the stop-band is expanded to Af=1.4
THz. It means that a typical broad stop-band filter is ob-
tained. For n =3, Af=1.6 THz and the transmission
spectrum consists of only one resonant mode, too. Simi-
larly, for n =4, and n =5, the stop-bandwidth are Af=
2.0 THz and Af=2.2 THz, respectively. The central
frequency of stop-band is blue-shifted obviously with n
increasing, see the dotted line in Fig. 2. Simulated re-
sults in Fig. 2 reveal that the number of metal layer has
an important influence on the bandwidth and central fre-
quency of stop-band of the CRR structure filter.
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Fig.2 Simulated transmittance spectra of the CRR structure
with different number of aluminum layer: (a) n=1; (b) n
=2; (¢) n=3; (d) n=4; (e) n=5
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=5

3 Discussion for CRR structure filter

To gain insight into the mechanisms which leads to
the broad stop-band, the influence of the distribution of
electric field on the broad stop-band has been studied in
the near-field. On the one hand, the distribution of the
electric fields is similar in each metal layer, while the in-
tensity of the electric field is decreased from the upper
layer to the lower layer, as illustrated in Fig. 3(a) ~
(¢). On the other hand, the distribution of the electric
field on the upper metal layer is investigated at different
resonance frequencies, as shown in Fig. 3(d) ~ (f). To
facilitate the study, at firstly, a resonance frequency
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higher than the stop-band frequency regime, such as 4.
15 THz, is selected to investigate the resonance mode.
The resonance mode reveals a inward coupling between
the circular hole when the resonance frequency higher
than stop-band, as shown in Fig. 3(d). Then, select a
lower resonance frequency, such as 1. 1THz. As shown
in Fig.3(f), the resonance mode exhibits a strongly cou-
pling between two adjacent unit cells. Finally, a reso-
nance frequency in the stop-band frequency regime, such
as 2. 75 THz, is selected and simulated. These reso-
nance modes which are discussed above exhibit a plas-
monic hybridization obviously, as shown in Fig. 3 (e),
and these two coupling resonance modes are obviously
strengthened because of the enhanced capacitance of
CRR structure. At the same time, the distribution of cur-
rent in different metal layers is investigated. As shown in
Fig. 4(a) ~ (c), the intensity of the current is de-
creased from the upper layer to the lower layer, which is
the same as the resonance intensity of the near-field elec-
tric field. When the resonance frequency is in the range
of the stop-band, the intensity of the distribution of cur-
rent is significantly higher than the frequency outside the
stop-band. Through comparing Fig. 2, 3, 4, it can be
found that the intensified capacitance of CRR structure
leads to the stop-band of filter broader. The resonance
between circular hole and the resonance between two ad-
jacent unit cells has an important influence on bandwidth
and central frequency of the stop-band.

Fig.3 (a) ~ (c¢) Simulated distributions of the electric
field in the top, middle, and underneath layers at the fre-
quency of 2.75 THz. (d) ~ (e) Simulated distributions of
the electric field in the top layer of CRR structure at fre-
quency of 4. 15, 2.75, andl.1 THz
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To evaluate the filter performance of the CRR struc-
ture, the quality factors (Q) is employed :
Q =/f/ & , (2)
In the formula (2), the lower the value of the quality
factor, the broader the stop-band of the CRR structure
filter is. As shown in Fig. 5, Q is decreased with n in-
creasing. Such a broad stop-band filter can effectively e-
liminate the interfering signal or suppress the undesired

Fig.4 (a) ~(c) Simulated distributions of the current in the
top, middle, and underneath layers at the frequency of 2. 75
THz. (d) ~ (f) Simulated distributions of the current in the
top layer at frequency of 4. 15, 2.75, and 1.1 THz
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responses in the THz range.

Fig.5 Quality factor of CRR structure filter with the number
of aluminum layers (n)
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The relationship between the metal layer, dielectric
layer, and the stop-bandwidth is studied, as shown in
Fig.6. For n =2, the metal layer has been changed to
gold layer, copper layer and silver layer. Both central
frequency and stop-band of these samples are very simi-
lar. However, the dielectric layer has an important influ-
ence on the central frequency and stop-band. In our sim-
ulation, the dielectric constant is reduced from 5 to 1,
the stop-band is broaden and the central frequency blue-
sifted obviously, as shown in Fig. 7. The CRR structure
filter is sensitive to the dielectric layer but insensitive to
the metal layer. Moreover, the multilayer electron-beam
lithography technique can be used to manufacture this
CRR structure'?'. Tt means that the fabrication of CRR
structure filter is feasible and practical.

4 Conclusion

A broad stop-band metamaterials filter with CRR
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Fig.6 Simulated transmission spectra of different metal layer
with n =2

K6 ARIFEGER)ZMRIE (L n =2 )

0.9
0.6
0.3
88
0.6
0.3
88
0.6
0.3
88
0.6
0.3
X
0.6

0.3
0.0

&5

e=4

Transmission

Frequency(THz)

Fig. 7 Simulated transmission spectra of different dielectric
constant with n =2
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structure in the THz regime is designed and simulated.
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Results indicate that a broad stop-band filter is realized
through using a multilayer structure consisting of alterna-
ting metal layers and dielectric layers. The plasmonic hy-
bridization of inward coupling mode and adjacent unit
cells coupling resonance mode leads to the stop-band
broader. The stop-bandwidth can reach to 2. 2THz with
increasing the metal layer number. The stop-band filter
is sensitive to the dielectric layer but insensitive to the
metal layer. Moreover, the central frequency of stop-
band is blue-shifted with n increasing or the dielectric
constant of dielectric layer decreasing. A broad stop-
band filter can be developed by selecting the appropriate
structural parameters, and stacking CRR structure metal
layers and dielectric layers.
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