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Level set based segmentation of moving humans
in thermal infrared sequences

GUO Yong-Cai', TAN Yong">*, GAO Chao'
(1. Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry,
Chongqing University, Chongqing 400030, China;
2. Physics and Electronic Engineering Department, Yangtze Normal University, Chongging 408003, China)

Abstract; The level set based active contour model ( LSAC) has been proved advantageous for image segmentation. Based
on LSAC techniques, a novel algorithm was proposed to overcome the difficulties of image segmentation in infrared human
detection systems. It consists of a motion-based LSAC module, a threshold-based LSAC module and a fusion module. The
motion-based LSAC, which bridges level set and background-subtraction techniques, conducts foreground segmentation and
background estimation simultaneously based on converged level set functions. It works for detecting the moving regions in a
sequence. Moreover, its output is regarded as the input of the threshold-based LSAC, which combines level set and thresh-
olding techniques. This threshold-based LSAC module has the ability to extract the image regions having intensities within
the range specified by dual thresholds and works for detecting all possible regions that may contain human candidates. Fi-
nally, the third module fuses the LSAC outputs and results in faithful segmentation result owing to the morphological open
reconstruction. Furthermore, the fast numeric scheme proposed for evolving the LSAC modules and the optimized algorith-
mic flow improves efficiency. Experimental results demonstrate that the algorithm enjoys better performance in accuracy, ef-
ficiency and robustness to camera movement and temporal changes in the scene in comparison with the rival algorithms.
Key words: image processing; level set based active contour; thermal infrared human image; open reconstruction
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Introduction

Thermal Infrared imaging is independent of illumi-
nation and works efficiently in dark and poor lighting
conditions. Owing to this advantage, human detection
in infrared imagery has been widely used in the systems
for military night vision, traffic security, etc.. Image
segmentation, which separates objects or events of in-
terest from their surroundings, works as a fundamental
step. However, perfect segmentation is hardly availa-
ble due to the following reasons. Firstly, the poor im-
age quality, such as image blur, poor resolution and
clarity, low foreground/background contrast and heavy
noises, makes it difficult to detect the objects in infra-
red images, although such objects may be brighter than
the background and seldom affected by such factors as
light changing, shadows and clothes. Secondly, many
disturbing objects can also be captured by infrared
cameras due to their hot temperature. Thirdly, great
variations of poses, sizes, body shapes and appearance
make it hard to extract faithful human silhouettes and
complete interiors.

Many methods have been proposed for infrared hu-
man image segmentation. Among them, thresholding '’
may be the most popular one due to its simplicity and
efficiency, but it often causes serious fragmentation.
The method called projection'” has similar advantages
but it just adapts to simple human patterns. Motion-de-
pendent techniques™ are also proposed for the task.
Unfortunately, they can not completely avoid the defi-
ciencies such as fragmentation, and sometimes they
work slowly.

Active contour models are generally impractical
for infrared human image segmentation due to their in-
efficiency. However, the trials of applying them to in-
frared images can be attractive. Firstly, they can a-
chieve sub-pixel accuracy of object boundaries. Sec-
ondly, they provide a flexible energy minimization
framework in which multiple image cues can be natu-
rally integrated. Thirdly, enclosed, smooth contours
can be directly presented. Early models are usually
difficult to handle topological changes of the contour
until the level set method"* was proposed. It represents

implicitly the active contour as the zero level set of a

higher dimensional function called level set function
(LSF), and deforms this function instead of directly e-
volving the contour to approach object boundary.
Thereafter, many level set based active contour models
(LSACs) have been proposed.

To overcome the difficulties in the segmentation of
infrared human sequences, a novel level-set based al-
gorithm was presented. In comparison with rival meth-
ods, the proposed algorithm is advantageous in seg-
mentation accuracy, efficiency and the robustness to
camera motions and temporal changes in the scene.

The rest of the paper is organized as follows: in
section 1, level set basics are introduced. In section
2, the proposed algorithm is presented in detail. Ex-
perimental results and analysis are given in section

3. Finally, some conclusions are drawn in section 4.
1 Level set basics

Let C(P,t) ’ defined as{x(P,t) ,y(P,t) }9 de-
note a time-dependant curve starting from the initial
position Cy(p). The motion of C(p,t) is governed by

the equation written as

aC(p,t) _
ot = F(EON , (D)

C(p,t =0) = Cy(p)
where F(.%) is a function concerning about the mean
curvature .%. It defines the moving speed of such dy-
namic curve in the direction of its Euclidean normal in-
ward vector N. The level set method is an efficient nu-
merical technique for curve evolution. In this method,
a scalar Lipschitz function ¢ (p,t), i.e., the LSF,
embeds an n-dimensional surface S in an R**' space
surface. The points on surface S are mapped by ¢ (p,
t) such that S={pld(p,t) =c}, where c is an arbi-
trary scalar. In other words, S is the ¢ level set of the
function ¢. Actually, the zero level set is often treated
as the curve C(p,t). In accordance with (1), the
first order of partial differential equation (PDE) is re-

presented as

9 _
L= Fl vl . ()

where | V¢! represents some appropriate finite differ-
ent operators for the spatial derivative, and ot the tem-

poral step. Since different topologies of the zero level
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set do not imply the different topologies of the level set
function ¢, this LSF is supposed to be topology free,
which facilitates the tracking of the curve within the e-

volution.

2 Algorithmic details

The proposed algorithm consists of three modules,
i. e., the motion-based LSAC module for detecting
moving human candidates in a sequence, the thresh-
old-based LSAC module for detecting all the regions
that may contain human candidates in the sequence,
and the fusion module refining outputs of previous mod-
ules to produce algorithmic results that are faithful to
ground-truths. Note the LSFs used in the LSAC mod-
ules are denoted by the symbol ¢ with some subscripts.
2.1 The Motion-Based LSAC

Let f, denote the frame captured by an infrared

camera at time ¢. Considering the sequence slice that
consists of the frames f, ,,n=1,2,... N, possible
temporal changes or camera motions may be slight in
this slice. This situation can be especially true when
such slice lasts pretty short time. Therefore, an object
that moves across the slice can be given by background
subtraction with an assumed background image. In this
section, the background image is denoted by B. Let ()
be the image domain of the frame f;, Vie [t-N,t],
and C,,; be the active contour that separates f; into inte-
rior region inside(C, ;) (i. e. , the object) and exterior
region outside( C,,;) (i. e. , the background). Let ¢,,,:
0O—R be the LSF that implicitly represents the parti-
tion of () as follows:

C. = {(x,5)1 ¢,(x,y) =0}

inside(C,;) = {(%,y) | ¢,.(x,y) > 0}

outside(C,;) = {(x,y) | ¢(x,y) <0}
the following energy functional can be minimized to de-

tect the object that moves across such slice :

Emi = HﬂF(¢m(x,y))(a - (fl(x’y) -B(x,y))2)dxdy +

IMJ; »dS, VI € [t _N9t] ’ (3)
where F(¢,,;)is a function defined as
F(n) = 0.5 +5in22 o, & [~ pm pml.
B
Vie [t-N,t] - (4)

It can be seen that F lies in[1/2, 1]if 0<¢,, <fBmw
and[0, 1/2]if -Bw<d,; <0. B 1is a positive parame-
ter that controls the upper and lower bounds of ¢, vari-
ation, and a is another parameter working for the
differencing between f; and the background B.

The second term on the right hand side of Eq. (3)
is a arc length related regularization term, which as-
sures the smoothness of C,; and avoids the occurrences
of small isolated regions. The parameter u, controls the
weight of this term in the whole functional.

Using the variational principal, the gradient descent
flow equation corresponding to Eq. (3) is as follows:

Wi _ 1 Omi
o o 6BCOS 6'3((72—8)2-(1)+
Dam-depe‘rfdamterm
. A . _
Ml.s(%)dw(l V%l),vze[t Ni o, (5)

Curvature-dependant term

where 7 is artificial time, §(. ) is the Dirac function
defined by §(z) = 9H(z)/9z, in which H(z) takes
‘1’ if z=0 and ‘0’ if 2 <0.

Examining Eq. (5), only the first term on its right

hand side depends on image data. Given a point p,
this data-dependant term is positive if (f, —B)*(p) >
a and negative if (f, — B)*(p) <a, since the cosine
function is strictly non-negative. Correspondingly, the
LSF ¢,,; would increase when this term is positive, or
decrease when negative. As a result, the contour C,,
expands to get p included in interior region, or shrinks
to get p excluded from interior region. In this way, all
the points where (f, —B)*(p) >a can be satisfactorily
grouped into object regions, and the left group into
background regions. The parameter a can be viewed as
a detection parameter, as it decides the points where
the absolute differences between f; and B are signifi-
cant. In this paper, a is empirically determined by
a =47, where r is the mean of the absolute-difference
matrix elements that are bigger than the median of such
matrix. The second term concerns about the mean cur-
vature %, which is equal to the divergence of ¢,,.
This curvature-dependant term guides the contour C,,
to move at speed .% on the image domain (). Since
spurious regions have bigger mean curvature, the mo-
tion results in the elimination of the spurious regions

and the smoothness of the contour. Guided by the data-
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dependant term and the curvature-dependant term, the

contour C,; evolves to form smooth object boundary and

makes the image segmentation when ¢,,; converges.
Minimizing the total energy of the slice £ =

z E ; with respect to B, and then setting the gradient

i=t-N
to be zero, it produces

3 [ F a0 () ddy
B - i=t-V'

: (6)
Y, [ F(du(x.y)) dady

iSToN

As can be seen from Eq. (6) , the background image
B is the weighting average of (N + 1) frames, and F
(¢,;) works as a weighting function. Since the fore-
ground corresponds to larger values of F'(¢,;) than the
background does, Eq. (6) makes the update of back-
ground image constrained by last segmentation result.
Discretizing the spatial partial derivatives d¢,,/0x, 0¢b,,/
dy, and the temporal partial derivative ¢,/ o1, the solu-
tion to Eq. (5) ¢,,can be iteratively searched by

bui’ = b + At L()) . (D
where At is the temporal step, and L(¢";) is the dis-
cretized terms on the right hand side of Eq. (5) in kth
iteration. Eq. (7) converges so slowly that the follow-
ing numeric scheme utilizing a binary level set function
(BLSF) "lis adopted. The detailed steps of this
scheme are as follows:

(1) Initialize ¢2; as a binary function, which
takes 1 and -1 in the regions inside and outside of the
contour, respectively. Then, set the stopping criterion
T =1 ¢ — ¢% | < A, where A is a very small con-
stant working as a threshold;

(2) Calculate o' by pti' = b, + At V , where
V is the discretized data-dependant term in Eq. (5) ;

(3) Get the sign of ¢*'' and smooth it by a
Gaussian filter, i.e. , ¢-' = sign(p'') * G, , where
G, is the Gaussian filter with standard deviation o.
The symbol “ * ” denotes a convolution operator;

(4) Repeat step (2) ~(3) until it meets the stop-
ping criterion 7. Finally, output ¢, = sign(ir').

Note the size of G, used in above procedure can
be truncated to K x K, where K is the smallest positive
integer that is bigger than 4¢. A truncated Gaussian

filter with the size 5 x5 can be seen in Fig. 1.

0.2 5

0.15 §

0.1 +§

Go(x,y)

0.05

[ A S —— ——

Fig.1 A truncated 2-D Gaussian filter (K=5,0=1)
B 1 Ebra —dem kit es

2.2 The Threshold-Based LSAC

Since humans usually appear brighter than the
background in an infrared image, they can be simply
and effectively detected by thresholding. However, in-
candescent objects, such as light bulbs and vehicles,
which appear brighter than humans, can often be ob-
served in surroundings. Therefore, it is appropriate to
set dual threshold values for a thresholding algorithm.
Let L and U,0<L < U<255 denote such dual thresh-
old values. Based on the work in Ref. 1, the following

criteria are proposed to decide L and U

L= %8(7 +o')
s , (8)
U = min(3 x 77,255)

where y and ¢’ are the average and standard deviation
of the frame f;. respectively. The parameter ¢ varies in
(0, 1]. Image contrast and noise level should be con-
sidered for the choice of ¢. Afterwards, a quadratic

function is defined as follows:
2

g(z) = (L%U)Z - (z—L’z’U) . 9)

As can be seen, this function is positive if z lies

between (L, U) and negative if it lies beyond the
range. Based on g(z), the regions having intensities
within[ L, U] can be got by minimizing this energy

functional

B, = - [[ H(gu(x,9))elf(,y)) by +
Q
[ A= 0u(r)etGuxp) oy 4 [ 5, (10)
Q Cst

where ¢,is the LSF, C,, is the active contour ( or the

zero level set of ¢,) .
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(c) ¢.(L=129, U=180)

(d) Detected region

Fig.2 Exemplar images for the threshold-based LSAC
B2 ZETEIER LSAC BALE TR R

The minimum of Eq. (7) would be met when all
pixels with the intensities within (L, U) are grouped.
In other words, by minimizing Eq. (7), all regions
that may contain humans in the frame f, can be a-
chieved. Using the variational principal, the gradient
descent flow equation corresponding to Eq. (10) is as
follows ;

= 080 (€0 i 7)) (D

The solution ¢,; can also be sought by the numer-
ic scheme given in section 2. 1. An illustration for this
LSAC is given in Fig.2. As can be seen from the seg-
mentation result Fig. 2 (d), the background and the
incandescent wheel get excluded simultaneously.

2.3 The Fusion Module
Based on the solution ¢, to (5) and the solution

¢, to (11), the foreground regions in f, can be given by
{R,,,, = {(x,5) | ¢p(x,y) >0}
R, = [(6,0) 1 6 (x,y) >0]

Owing to the factors such as image noise, human
inhomogeneity, occlusion and disturbing objects in sur-
roundings, human regions in R, and R, may be frag-
mentary and spurious regions may occur. For example,
Fig.3 (b) is the segmentation result of Fig.3 (a) by
the motion-based LSAC, and Fig. 3 (c) the result by
the threshold-based LSAC. One sees that human frag-
ments and spurious regions ( corresponding to image
noise and the bright lamp) occur. To eliminate spuri-

ous regions, open reconstruction ( OREC)'® that en-

tirely keeps connected component shapes is more appli-
cable than regular morphological filters that may result
in jagged boundaries. OREC starts from a marker (or
seed) and spreads in flood-fill fashion to recover sub-
regions of a mask in which the marker lies. Fig. 4 il-
lustrates the mechanism of this operation.

Spurious regions in the LSAC outputs do not local-
ly correspond due to the random of image noise and the
disturbing objects detected by a single LSAC module.
This situation is different for human regions which over-
lap completely or partially. So, one can always get the
markers by finding the overlapped regions in human re-
gions but not in spurious regions. By starting from
these markers and then recovering the connected com-
ponents in which the markers lie, spurious regions in
each of the results achieved by LSAC modules get re-
moved while human regions get recovered with no loss
of boundary smoothness. Furthermore, The OREC out-
puts are fused by an OR operation. In this way, human
fragments merge to be meaningful regions. This process
can be expressed as

R=R;UR, = ((R.NRHAR,) U((R,.,NR,)AR,.) , (12)
where “A” denotes the OREC operator. Note the AND
result between R, and R, works as the marker, and
R
shows the fusion result between Fig. 3 (b) and Fig. 3

., R,, work as the mask, respectively. Fig.3 (d)
(¢). It can be seen that most spurious regions disap-
pear, and in the meanwhile, human interior fragments
get reduced dramatically. Fig. 3 (e) shows human
contours before and after the fusion. Clearly, the red
contour derived from the fusion module fits the human
silhouette much better than the blue or green contour
derived from a single LSAC module. What’s more, no
loss of contour smoothness can be found by examining
Fig.3 (f), since the red one always overlaps on cer-
tain pieces of the blue or the green one.
2.4 The Complete Work Flow

Figure 5 shows the working flow of the proposed
algorithm. Except first (N + 1) initial LSFs, which
should be manually set for motion segmentation of the
first (N +1) frames, the left initial LSFs which corre-
spond to left frames are automatically given. The back-
ground image B can be simply initialized as the mean,

or the median of the first several frames of the se-
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Fig. 3  Exemplar images to illustrate the fusion module.
(a) Original image. (b) Result by the motion-based LSAC
(Left; final contour. Right; interior region). (c) Result by
the threshold-based LSAC. (d) Fusion result. (e) Human
contours before (blue and green lines) and after the fusion (red
line). (f) Zoomed view of the rectangle region in (e)

B3 REAEEIEHTHRERE (a) REMR. (b) B3
LSAC fEH T BIGE R (£ : BATESEME. 4. BiriEh
X3). (¢) EFHEM LSAC B4R, (d) A%
R (o) MEATAKRE(HAS5G6HE) 5SMEEHAKE
BE(LAML) . (f) F(e) PR X BB E

(’1
- @

Fig.4 Exemplar images to illustrate open reconstruction.
(a) The mask. (b) The maker ( bright regions). (c) Re-
sult by open reconstruction

K4 FERAMBITHRERRE. () BE. (b) 5
(FsEXH). (o) FFEESR

(b) ©

quences, or even the first frame.

For each frame, the output of the motion-based
LSAC is used as the initial LSF for the threshold-based
LSAC to make the threshold-based LSAC converge rap-
idly since the initial contour is close to object boundary.

In the step of LSF updating, only one new LSF is
actually computed for the new coming frame while the
others are sequentially obtained from previous computa-
tions. This situation is similar in the step of back-
ground updating. Exemplar images to demonstrate the

working flow can be seen in Fig. 6.

3 Experimental Results and Analysis

The proposed algorithm (PRO) was implemented
by Matlab7.1 on a computer with Intel Core Duo 1. 66

GHz CPU, 2G RAM, and Windows XP operating sys-
tem. Three thermal infrared clips, which provide rela-
tively easy, moderate, and stiff conditions for human
segmentation respectively, were used for testing the
PRO. In clip 1#, one subject enters the field of view
(FOV) from the left. The subject is then hidden be-
hind a tree for about 19 seconds, and continues walk-
ing right. In clip 2#, the subject enters the FOV from
the right and continues walking left to a door at the end
of a hallway where it exits the building. Clip 3# was
acquired by our FLIR A40 thermal infrared camera on
campus. The subjects enter the FOV on the top left
corner and walk along the road. Since the camera pans
in a clockwise direction horizontally, the subjects exit
the FOV on the bottom left corner. More details about
the clips are given in Table 1. Note the heading frames
of each clip are shown in top row, and the overlaid ar-
rows on the frames images indicate the motion direction
of the subjects. Unless otherwise specified, the param-
eters used for the PRO are as follows: N=2,8=6,
Ar=5,1=1x10"%, g=1 for clip 1# ~2# and £ =0.
85 for clip 3#, owing to their differences in contrast and
noise conditions. The size of Gaussian filter G, with o
=1 is 5 x5. The LSF provided for the motion-depend-
ant LSAC module is initialized as ¢, and Fig.7 shows
its 3-D and top views. Moreover, the background image
is initialized as the first frame of each clip. For compar-
ison, the mixtures of Gaussians (MOG) "' is chosen as
a representative of statistical methods, Lee’s method *
as a representative of background-subtraction based lev-
el set methods, and Li’s method '’ as a representative
of frame-differencing based level set methods. Three
Gaussian kernels and adaptive thresholding are used in
the MOG. The background images used in Lee’s method
are initialized by the median method. All parameters
with the rival methods are tunable for achieving as better
results as possible.

The results in clip 1# ~3# are shown in Figs. 8 ~
10, respectively. In Fig. 8, the top row shows four
representative frames sequentially labeled as S,, S,,
S; and S,. Moving human regions are highlighted in
the frames by white rectangles, and their motion direc-
tions are indicated by arrows. Four middle rows show

the results by the referred methods above. The red
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contours overlapping on the frames denote the final
contours derived by the methods. The regions inside
red contours are the detected objects. Besides, the
bottom row shows the manually labeled ground-truths.
Fig.9 and Fig. 10 are configured in the same way. Mo-
reover, the threshold values used in the threshold-

based LSAC are listed in Table 2.

Infrared
sequeces
T

Examining Fig. 8, the MOG based result is rather
fragmentary due to an occlusion that the subject under-
goes soon after it enters the screen from the left. Lee’s
and Li’s methods perform better than the MOG but their
results are still incomplete. The PRO based result is
least affected by occlusion, because its fusion module

eliminates as many fragments as possible.

N I

_______ i

The threshold-based |

The motion-based

LSAC module

Initalizing (N+1) LSFsand
(N+1) background images

LSAC module
Initalizing the LSF, L and U

Y

for the threshold-based LSAC

Envolving such LSFs
by solving Eq. (5)

Envolving the LSF

]

by solving Eq.(11)

Outputing the (V+1)th
LSF that converges

|
|
|
|
|
! |
|
:
|
|
|
|
|

l Outputing the converged LSF

for the newly coming frame

*

|
|
Updating NV background images :
|
|

i
I
i
I
I
I
I
I
I
|
I | Updating the (N+1) LSFs l—>
i
I
I
i
I
I
I
i
I
I

*
Computing the LSF via Eq. (5)

8

Fetching the next frame %

Fig.5 The working flow of the proposed algorithm

BS5 AEEBITHE

> 100 0156
#1050 g5

(b)

Fig.6 Exemplar images to demonstrate the working flow. (a) The initial LSF manually set for the motion-based LSAC, (b) Ini-
tial background image, (c) The frame to be segmented, (d) The estimated background for (c), (e) Absolute difference between
(c) and (d), (f) The converged LSF of the motion-based LSAC, (g) Object contour derived from (f), (h) The converged LSF
of the threshold-based LSAC, (i) Object contour derived from (h), (j) Object contour given by the complete algorithm, (k) Ob-

ject interior

B6 ACEM:TARBEERE. (a) 23) LSAC B3 i) LSF MI4R1H; (b) ¥R HE RSHREIG; (c) FAaREniESG; (d) B
(o) ERMETHER; () B (o) M (d) BZ4EXT 2 E B ; (f) 1230 LSAC B3 89 ; (g) i (£) 152K BARSEES; (h) %
TER{ER) LSAC bk i ; (1) i (h) 52180 BARTER; (§) 58 BB LTS BARRE; (k) BAsAERX R
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Table 1 Details of test clips
F1 WAFIERER

Clip 1#: Outdoor clip including a subject with relatively
clear boundary and homogeneous interior. Selected from
“OTCBVS Infrared Benchmark”. Good contrast. Ac-
quired by fixed Raytheon L-3 Thermal-Eye 2000AS
camera. Frame size =320 x 240 pixels. 8-bit grayscale
JPEG format. 100 frames.

Clip 2#: Indoor clip including a subject with blurred
boundary and homogeneous interior. Selected from
“OTCBVS Infrared Benchmark ”. Acquired by fixed
Raytheon L-3 Thermal-Eye 2000AS camera. Frame size
=320 x 240 pixels. 8-bit grayscale JPEG format. 80

frames.

Clip 3#: Outdoor clip with some shadowing, intensive
noise, and the subjects having strong inhomogeneities.
Shot by FLIR A40 thermal infrared camera. FOV =
24°. Distance to target D <100 m. Panning rate =~
4.5°/sec. 15 frames/sec. 8-bit grayscale BMP format.
Frame size =320 x 240 pixels, 68 frames.

LSF Value
s o
Qo=

[N

Fig.7 The initial LSF ¢,. Left: 3D view. Right: top view
Bl 7 LSFHIM{E - Zo: SCEHLE. . TEHLE

Fig. 8  Segmentation results in clip 1#. First row: Sample
frames labeled as S; ~ S, sequentially. Second row: result by the
MOG. Third row: result by Lee’s method. Fourth row: result
by Li’s method. Fifth row: result by the PRO. Sixth row: the
ground-truth

K8 PRO 54X LI E7E clip 1# EH) - HISR. 25 —17:
WRFSH S, ~ S, BFFINL 5 —47: MOG JFkg . =
17: Lee JT¥EEER. S I04T: Li Jr kg5 2R, S H4T: PRO Jiik
GER. AT EENMMEX

Later, all methods except the MOG give faithful
foreground regions as soon as the occlusion disappears,
owing to relatively good contrast of the whole clip and
intensity homogeneity of the subject.

Examining Fig. 9, the PRO misclassifies the fe-
west pixels belonging to human region into the back-
ground. So, the subject region can be more faithful to
ground-truths than those given by its rivals. Also, it
misclassifies the fewest background pixels into the fore-
ground. For example, no human regions should be
found in S, (positioning at the tail in top row) since the
person has exited. However, spurious regions can still
be seen in the rival based results.

Clip 3# presents great challenge to the algorithms.
As can be observed from Fig. 10, the MOG and Lee’s
methods present meaningless segmentation results, as
they are intrinsically dependent on relatively static
background image. The PRO and Li’s methods provide
much better results. In comparison with Li’s method,
the PRO misclassifies fewer background pixels, and
makes the result “clearer”.

Jaccard similarity and the mean absolute distance
(MAD) "™ are chosen as the metrics to quantitatively
evaluate above results. The Jaccard similarity is de-
fined as S, =1 A; N A, /1 A; U A, , where Ag,A,
are extracted foreground region and the ground-truth,
respectively. One can see a perfect overlap between A
and A, if S, =1 and no overlap if S, =0.

The MAD measures the dissimilarity between the
extracted boundary and the ground-truth. A smaller
MAD value means that the extracted boundary is closer
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Fig.9 Segmentation results in clip 2#. First row: Sample
frames labeled as S; ~ S, sequentially. Second row: the re-
sult of the MOG. Third row: the result by Lee’s method.
Fourth row: result by Li’s method. Fifth row. the result by
the PRO. Sixth row: the ground-truth

B9 PRO 54X HJ7 ik 7E clip 2# LB HI 45 R, 5F—
17: KRGS H S, ~S, BIFFINL. 55 —17: MOG J5 k45
RBZAT: Lee LGSR, SUAT: Li JFikg R B HAT
PRO Jr ik 4. 7547+ Lo MAL B

Fig. 10 Segmentation results in clip 3#. First row: Sample
frames labeled as S; ~ S, sequentially. Second row: the re-
sult of the MOG. Third row: the result by Lee’s method.
Fourth row: result by Li’s method. Fifth row. the result of
the PRO. Sixth row: the ground-truth

B 10 PRO 5%k 7E clip 3# L) HIS5R. 55—
17: KRGS H S, ~S, BIFFINL. 55 —17: MOG J5 k45
AT Lee FRGR. SIUAT: Li FRER. B HAT
PRO J7ikh . 517 : EI KN

to the ground-truth. Let P = {p,,p,,*,p,} denote
the set of pixels on the boundary, and Q = {gq,
g>,**,q, | the set of pixels on the ground-truth. The

MAD is given by

{ me“pl q||+—2min||qj—pi||}
=1t

MD(P,)) =
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Fig. 11  The comparisons of Jaccard similarity of the
MOG, Lee’s, Li’s and the PRO in test clips

B 11 PRO J¥:'5 MOG, Lee Jr¥k, Li E7Eillid)F
%) 1 Jaccard similarity X 2%

Figure 11 presents the comparisons of Jaccard simi-
larity of the PRO with its rivals in the test clips. One
sees: 1) for the PRO, the averages of the metric S,. are
about 0.8, 0.75, and 0.7 in clip 1# ~3#, respective-

ly. Considering poor imagery quality and inhomoge-
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#eblgs2 The threshold values used in the threshold-based

LSAC
F2 ETHEAM LSAC #EHpTE R BE
S S, S, S,

_ L=120.9, L=1148, L=1151,  L=116.8,
clip 1#

U=237.7  U=232.1  U=225.2 U=227.5
g LTRSS, L=loal,  L=97.2, L=97.5,
P U=237.6  U=233.8  U=228.6 U=230.1
o L=1064, L=102.0,  L=1067,  L=105.7,
P U=255.0 U=255.0 U=255.0 U=255.0

subjects, one can believe the PRO based results are
good enough; 2) the PRO based curves keep relatively
stable while the ones of the rivals fluctuate more violent-
ly; 3) the PRO presents the highest (or close to the
highest) metric values regardless of the clip captured by
a fixed camera or a panning one. However, the metric
values of rival methods are sensitive to such factor.

The reasons behind such advantages are: 1) the
motion-based LSAC module is dynamic enough to catch
possible temporal changes or camera motions owing to
the strategy for background update. Since the back-
ground is updated by a weighting average of several re-
cent frames, the background image would be close to
one of the frames. The background subtraction runs
like frame differencing in the module, so it copes well
with temporal changes and camera motions; 2) with
the threshold-based
LSAC module outputs relatively complete foreground

proper settings of thresholds,

regions, which lead to relatively complete fusion result
even if the regions detected by the motion detection
module are fragmentary; 3) in the fusion stage, spuri-
ous regions can be eliminated. Moreover, human frag-
ments merge to form more meaningful human interiors.
The MOG and Lee’s methods depend on static back-
ground, so that such factors as abrupt intensity changes
or camera motion would degrade their performance.
Li’s method relies on the technique of frame differen-
cing but it leads to many pixel misclassifications.

With refined segmentation results via manually ex-
cluding all non-human sub-regions in the foreground,
MAD computations are conducted and the results are
shown in Fig. 12. Since the MOG and Lee’s methods
fail in clip 3 #, corresponding MAD curves are not
drawn. Figure 12 shows that the MAD curves of the
PRO keep at a relatively lower level in clip 1# and clip
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Fig. 12 MAD comparisons of the MOG, Lee’s, Li’s and
the PRO in test clips

Bl 12 PRO k5 MOG, Lee ik, Li FIL7ElliRT
i) iy MAD St H 2R

2#. In clip 3#, the performance of Li’s method seems a
litter better than the PRO. However, this advantage
may be counteracted in practical systems, since the e-
normous false positives produced may seriously mislead
the judgment of human candidates. As a result, the
extracted object contour may be completely useless.
The advantages of the PRO to present faithful human
contour result from the following reasons. Firstly, the
LSAC modules themselves present smooth object con-
tours. Secondly, the fusion module never degrades
contour smoothness due to its advantage to keep object

shapes completely.
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Table 3 The time costs of level set methods ( Sec/frame).
( mean + standard deviation )

R3 BKEEFEENKF T _EREEFFEH (FH/17) (28

B irEE)
Lee’s Li’'s PRO
clip 1# 0.328 £0.044 1.293 £0.014 0.318 +0.027
clip 2# 0.328 £0.045 1.333 £0.022 0.315 +0.005
clip 3# 0.325+0.012 1.388 +0.031 0.304 +0.005

Table 4 The time costs of the PRO with different parame-
ter settings of the Gaussian filter ( Sec/frame).
( mean + standard deviation)
x4 SHREBAESHET PRO FEEMNKFT LK
B B FREH (D7) (391E = 4RAEE)

clip 1# clip 2# clip 3#
K=3,0=0.7  0.283 +0.002 0.296 +0.005 0.297 +0.006
K=5,0=1.0  0.318 £0.027 0.315 +0. 005 0.304 +£0.005
K=7,0=1.6  0.325+0.002 0.325 +0.002 0.323 +£0.002
K=9,0=2.0  0.348 +0.002 0.347 +0.002 0.346 +0.002

Next, the computational burden of the PRO is as-
sessed. The average time costs are computed for the
methods except the MOG as it is notoriously slow. The
results are listed in Table 3. It can be seen that the
PRO works as fast as its rivals at least. The reasons be-
hind are: 1) the BLSF based numeric scheme conver-
ges so quickly that a solution can be reached after one
iteration time at most times. 2) The optimized working
flow saves computation costs. For example, this mo-
tion-based LSAC module computes only one LSF in-
stead of (N +1) LSFs when it segments a single frame
although it requires (N +1) LSFs for the background
estimation each time.

The time costs are also recorded for the PRO with
different parameter settings of the Gaussian filter. The
results are listed in Table 4. As can be seen, the time
cost increases with the augment of K. Therefore, rela-
tively smaller K is preferable for efficiency. As for the
standard deviation g, it should be no more than one
quarter of K and never be too small for evolution stabil-
ity. The BLSF is not differentiable at the discontinui-
ties between 1 and — 1. The Gaussian filer smoothes
the discontinuities and finally results in high quality
contours. With a too small g, the filer may fail to do
its job and lead to degraded contours or completely
damage the result. For efficiency and accuracy as

well, it is appropriate to chose K between[3, 7]and &
between[0.7, 1.6].

4 Conclusion

A level set based algorithm was proposed for the
segmentation of infrared human sequences. It provides
the results with sub-pixel accuracy, and enjoys the ro-
bustness to temporal changes and camera motions. Ow-
ing to the fast numeric scheme and optimized working
flow, it takes better computational efficiency in com-
parison with the rivals. Such advantages of the pro-
posed algorithm make it more practical for human de-
tection. However, further algorithmic and code optimi-
zations should be done to meet the real-time demand

from practical human detection systems.
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