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1.54 pm electroluminescence from ErQ doped
ADN organic light-emitting diodes
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Abstract ; A near-infrared (NIR) organic light-emitting devices (OLEDs) was demonstrated with emissive layers ( EMLs)
based on erbium (111) tris (8-hydroxyquinoline) (ErQ) and the blue host material of 9, 10-di-beta-naphthylanthraeene
(ADN). The fundamental structure of the devices is (p-Si /NPB /EML /Bphen /Bphen:Cs,CO;/Sm /Au), where three
sets of EMLs (ErQ/ADN bilayer, (ErQ /ADN) x3 multilayer, and ErQ: ADN doped layer) have been compared. In all the
three structures, 1.54 pm electroluminescence was observed due to the 41,;,, ~41,;, transitions of Er’*. Compared with the
ADN/ErQ bilayer structure, the NIR electroluminescence (EL) intensity is stronger by three times in the ADN; ErQ(1:1)
doped structure. The ADN: ErQ composite films with different doping levels were further characterized by the measurements
of absorption, photoluminescence and photoluminescence decay time. The results indicate effective energy transfer from ADN
host to emissive molecular ErQ in the NIR EL process.
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, where the 1.54 pum emission is partic-

Introduction

Recently, near-infrared ( NIR ) electrolumines-
cence (EL) from Si-based organic light-emitting de-
vices (OLEDs) has been intensively investigated be-
cause of their potential applications in optical communi-

cation, planar optical amplifiers, NIR illumination and
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ularly attractive for its good agreement with the spectral

window for the long-haul optical communication systems

[3]

and for silicon photonics™'. Since Gillin reported Si-

based OLEDs using erbium (III) tris ( 8-hydroxyquino-

[4]

line) (ErQ) as emissive layers'"', many efforts have

been made to obtain 1.54 um EL, where Er’ + com-
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plexes have been frequently used for the 1. 54 um
OLEDs".

weak, because Er’* is difficult to be excited. There-

However, EL of Er complex still behaves

fore, selecting a proper host organic material with effi-
cient energy transfer to Er’* is quite demanding to effi-

. . 3
ciently excite Er’*

and then enhance the NIR emission.

In a previous study, we have fabricated Si-based
OLEDs using Tris ( dibenzoylmethane) mono ( phenan-
throline) erbium (III) (Er(DBM),phen) as dopant,
4 ,7-diphenyl-1,10-phenanthroline ( Bphen) as host and
electron transport layer to realize the Er* EL'®). In this
report, we use ErQ as the dopant and 9, 10-di-beta-
naphthylanthraeene ( ADN) as the host material in order
to enhance the Er’* excitation and then its EL. ADN is
an efficient blue host material, and its EL spectrum
covers a wavelength range of 410 to 510 nm'"). There is
a considerable overlap between the photoluminescence
spectrum of ADN and the absorption spectrum of ErQ.
The EL efficiency is markedly improved with a suitable
ADN: ErQ doping level.

NPB 60 nm

(a) bniblayer structure

ADN

(@

1 Experiment

The anodes and substrates were p-type (100) ori-
ented silicon wafers with a resistivity of ~ 10 - cm.
After routinely cleaned, the silicon wafers were etched
for 2 min in a 2% HF solution to remove the native ox-
ide layer. Then the 2-nm SiO, layers on the front sides
of the silicon substrates were grown in the oxidation
furnace at 400 C for 40 min to improve the resulting
device performance by the passivation of the silicon
surface states and the control of the hole injection. Al
layer with a thickness of 60 nm was deposited by ther-
mal evaporation on their backsides and annealed at
500 C for 10 min in pure N, atmosphere for ohmic
contact. The silicon wafers were transferred into an e-
vaporation chamber with a base pressure of 5 x 10 ~°
Torr. A 130 nm-thick stacked organic layer was then
deposited, comprising of a hole transport layer N, N’ -
bis-(1-naphthl) -diphenyll,1’ -biphenyl 4,4’ -diamine
(NPB), a light-emitting layer ADN: ErQ, an electron
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Fig.1 The schematic structures of (a) the bilayer structure, (b) multilayer structure, and (c) doped-layer struc-
ture. Molecular structures of (d) 9,10-di-beta-naphthylanthracene (ADN) and (e) erbium (1) tris(8-hydroxyquin-
oline) (ErQ). (f) Energy level diagram of ADN and ErQ, and energy transfer processes in electroluminescence
E1 (a) WESRHERRER, (b)) ZEHUEHAER, (o) BaiEnER, (d) 8-FEmmd (ErQ) 1y
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transport layer Bphen, and the electron injection layer
Bphen : Cs,CO, (mass ratio of 1: 1, short for Csphen).
Upon Csphen layer, Sm and Au layers were deposited
through a shadow mark with circular holes 3 mm in di-
ameter as a semitransparent cathode. The deposition
rates of metals and organic materials were 1-2 AS™',
monitored by a quartz oscillator. The resulting OLED
has a structure of p-Si / NPB 60 nm/ ADN:. ErQ
30 nm/ Bphen 25 nm/ Csphen 15 nm/ Sm 15 nm/ Au
15 nm. The device was designed by referring to the
previous study'® . As shown in Fig. 1, we refer to the
OLED with ADN (15 nm)/ ErQ (15 nm) emissive
layers as the bilayer structure, that with [ ADN
(5 nm)/ ErQ (5 nm) ] x 3 layers as the multilayer
structure and that with ADN; ErQ (1:1) (30 nm)
layer as the doped-layer structure.

When measuring the NIR EL, the devices were
driven by square pulses with a frequency of 11 Hz and
a duty cycle of 1: 1, and measured by a liquid-nitrogen
cooled Ge detector. The absorption of ErQ) thin film
was examined using a UV-Vis spectrophotometer
(Lambda 35). All measurements were carried out in

air at room temperature.
2 Results and discussion

The typical top-emission EL spectra for the three
sets of Si-based OLED are shown in Fig. 2 The typical
1.54 um peak is the characteristic emission of Er’* i-
ons from the transition 41,5, ~41;5,,. At the same volt-
age of 4.0 V, and the nearly same current of 48, 44
and 43 mA, respectively, the EL intensity in doped
structure is near three times and 1.5 times higher at 1.
54 pm than that in the bilayer and the multilayer struc-
ture, respectively.

In all the ErQ-ADN structures, there are three
possible 1.54 um emission processes. (1) Injected e-
lectrons and holes form excitons in the host molecules
ADN, and the excitonic energy is transferred to the
nearby central metal Er’* ions for 1.54 um light emis-
sion'®. (2) ErQ absorbs the photons from ADN, and
emits 1. 54 um light. (3) Injected electrons and holes
form excitons in ErQ) and the excitonic energy is trans-
ferred to the central Er’* ions to emit 1.54 pm light.
In the theory of the Forster type energy transfer'® | the
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Fig.2 EL spectra measured at the voltage of 4.0 V for the bi-
layer structure, multilayer structure and the doped layer struc-
ture. The inset shows their I-V curves and the EL intensity at the
peak wavelength of 1 540 nm in a typical operation range of 3 ~
5V
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probability of the energy transfer is directly proportional
to the overlap area between the emission spectrum of
the donor and the absorption spectrum of the acceptor.
In Fig. 3, there exists a considerable overlap between
the photoluminescence spectrum of ADN and the ab-
sorption spectrum of ErQ. Moreover, the photolumi-
nescence lifetimes of the ADN in different structures
change largely, as shown in Table 1. It is 6. 89 ns for
the pure ADN structure. For the doped layer (1:1)
structure, it is 3. 83 ns, much smaller than that for the
pure ADN structure. This indicates that ErQ quenches
the excitons in ADN as represented in process (1).
The results prove that the doped structure has a more

remarkable 1.54 um emission due to process (1).

Table 1  Photoluminescence life times of three different
structures & 1 =M ARE LB HRIRES®
Devices PL life time 7,(s) (1)
Pure ADN structure 6.89 47.79
Doped-layer structure 3.83 41.65
Multilayer-layer structure 4.16 41.00
Bilayer structure 6.43 47.28

In order to obtain more efficient 1. 54 pm EL, we
have optimized the ratio of doping level of ADN to
ErQ. In Fig. 4(a), the device with ratio of 1: 1 do-
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Fig.3 Photoluminescence lifetime spectra for the ADN struc-
ture, doped-layer structure, multilayer structure, and bilayer
structure. The inset shows the photoluminescence spectrum of
ADN and the absorption spectrum of ErQ
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ping level has the highest 1. 54 pm EL intensity, near-
ly 4 times larger than that of 5: 1 doping level and 25%
more than that of 1: 5 doping level. In the device of 5:
1 doping level, there are not enough Er ions to receive
energy transferred from the excitons formed in ADN,
and in the device of 1:5 doping level, Er ions are suf-
ficient but the excitons in ADN are not. The device of
1: 1 doping level may have the matched quantities of
ADN and ErQ molecules at this energy transfer rate,
which also indicates that the energy transfer from ADN

to Er’* is more efficient than that from the ErQ ligand

to the central Er’* ions.

Fig. 4 (b) shows the visible EL spectra of the
three structures and the photoluminescence spectrum of
the single-layer ADN. The peak wavelength of ADN is
about 460 nm, the devices with 1: 1 and 5: 1 doping
levels are 580 and 330 nm, respectively. Red-shift in
the emission of device with 1: 1 doping level is caused
by the ADN-Bphen exciplexes'’.

from the electron emitting layer host ( donor) to the e-

Charges transfer

lectron transmitting layer (acceptor) to form a charge
transfer complex (exciplex) at the interface between
the electron emitting layer host and the electron trans-
port layer because of the large energy difference of the
lowest unoccupied molecular orbital (LUMO) and the
highest occupied molecular orbital ( HOMO) energy

levels. The formation of an exciplex also leads to a
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Fig.4 (a) NIR EL spectra measured at the voltage of 4.0 V
for the doped layer structure with the ADN: ErQ doped ratio
1:1,5:1 and 1; 5. (b) Visible EL spectra of 5: 1 structure,
the 1: 1 structure, the 1:5 structure and the pure ADN struc-
ture
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broadened spectrum relative to the emissions of the in-
dividual acceptor or donor. Comparing with ADN film,
the EL emission peak of ADN: Bphen film shows red
shift from 460 to 580 nm. The energy level corresponds
to the difference between the LUMO level of Bphen and
the HOMO level of ADN, proving that ADN and Bphen
molecules form the exciplexes upon excitation. In addi-
tion, the red-shifted emission peaks disappear in the
EL spectrum of the device with 5: 1 doping level and
the pure ADN device, indicating that few excitons form
the exciplexes. There is blue-shifted emission with the
peak wavelength of 330 nm in the EL spectrum of the
device with 5: 1 doping level. We have not clear expla-

nation for that now.
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As the ADN content decreases, the visible EL in-
tensity decreases largely. Compared with the 5: 1 de-
vice, the visible EL intensity for the 1: 1 device de-
creases by 60 times and that for the 1:5 device is too
weak to be detected and is referred as the background
line. The fact that ErQ reduces the visible EL of the
ADN indicates that the energy transfer from ADN to
ErQ occurs.

3 Conclusion

We demonstrated the 1. 54 pum EL from Si-
OLEDs with the ErQ/ADN bilayer, (ErQ/ADN) x 3
multilayer, and ErQ: ADN doped layer with varying
doping levels, among which the 1: 1 doped structure is
the most efficient one in 1.54 ym EL. High-efficiency
intersystem energy transfer between Er complex and
ADN is responsible for the efficient 1. 54 pm EL.
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