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A novel regularized adaptive edge-preserving image
super-resolution algorithm
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Abstract: This paper proposed a novel adaptive regularization super-resolution (SR) method. The regularization term only
penalizes the low-frequency components in the image. Meanwhile it protects the high-frequency components which may re-
present edge, in which the penalty threshold is automatically determined based on a linear function. For the selection of
regularization parameter, a logarithmic function is proposed to adaptively determine the optimum regularization parameter in
each iteration step instead of a constant regularization parameter. The proposed algorithm has been tested in the synthetic
visiblelight image sequence and real infrared images. Experimental results show that the proposed approach is robust and
can restore image details efficiently.
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and linear space invariant (LSI) model, and the prior

Introduction

Images with high resolution ( HR) are often re-
quired in most electronic imaging application such as
medical imaging''', remote sensing'”’. In 1984, Tsai

) first proposed super-resolution ( SR)

and Huang
method which could obtain HR image from multiple low-
resolution (LR) images based on frequency domain.
For frequency domain-based method, the observation

model is restricted to only global translational motion

Received date; 2012 - 10 - 13, revised date: 2013 - 04 - 18

knowledge is difficult to be utilized. Therefore, various
spatial domain-based methods have been proposed, such
as maximum a posteriori ( MAP) method™', projection
onto convex sets ( POCS) approach'® | iterative back
projection (IBP) algorithm™’ , ete.

This paper is mainly based on the MAP model, in
which both the regularization term and regularization
Generally,

Gaussian smoothness prior is used to give the regulari-

parameter are very important elements.
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zation term in the MAP-based algorithm, but the recon-
structed image may become over-smoothness. This pa-
per mainly proposed a novel adaptively regularization
method. The proposed regularization term only penali-
zes the small discontinuities in images which are usual-
ly caused by noise and protects the large discontinuities
which are probably the edges. The penalty threshold is
determined by an indirect parameter based on the rate
of high-frequency component of the restored image. It
is important to determine a suitable regularization pa-
rameter. If the parameter is too small the noise cannot
be restrained efficiently. Conversely, the reconstructed
image will be very blurry. Some methods have been
proposed to determine the optimum regularization pa-
rameter directly. Vania'® proposed a method based on
a data-driven approach called generalized cross-valida-
tion. Bose!”! presented a method using L-Curve to se-
lect the regularization parameter. Dorota and Marek!®!
selected the regularization parameter based on U-
Curve. Although the methods presented above can pro-
vide good solutions the computational costs are very
huge. In this paper, instead of selecting an optimum
constant regularization parameter, an adaptive method
adaptively choose the regularization parameter in each
iteration step based on the ratio of fidelity term and
regularization term.

The rest of the paper is organized as follows. Sec-
tion 1 describes the image observation model. Section 2
describes the MAP-based model. The approaches to
select the penalty threshold and regularization parame-
ter are proposed in section 3. In section 4, the experi-

mental results and analysis are presented.
1 Image Observation Model

This section describes a simple observation mod-
el. The original HR image with size of [, N, X [,N, is
denoted in lexicographical form as a vector X = [ x,,
%y,...%,], where n =1, N,l,N,. Assume the observed
LR image is obtained by warping, blurring, and down-
sampling the original HR image (Fig. 1) and the k-th
observed LR image is denoted in lexicographical form

asy, = [Yi1s Yiose -
and m represents the size of LR image. The observation

’Yk,m] , where k=1,2, ...p

model can be formulated as:

v, = DHMX +n,fork =1,2,...p . (1)

Let I, and [, present the down-sampled factors in
vertical and horizontal directions respectively, and then
the size of LR image represented by m is N; x N,. Ma-
trix D of size N|N, X [;N,l,N, represents the down-
sampling process. H, represents the blur matrix of size
I,N,l,N, xI,N,I,N,. In this paper the blur matrix H,
is assumed to be the same for all observed LR images,
so in the rest of this paper the blur matrix is represen-
ted by H. M, stands for the warp matrix of size [, N,/,N,
X N,l,N,; n, represents the additional Gaussian
noise of LR image which is denoted in a vector of size
N,N, x1.

Noise
___________ 7y
I - 1
Warping : dlumng M1, | Down- ‘ '—L—R—i;n;;e_:
— ‘/[[) = [Optical| [Sensor| »~Sampling *@”} el
— 1] blur | | PSF | D i
Original Bl p— 1 !
HR image : - : ! :
X ' blurring H, ! I !
Warping| ! l Down- | - [
[ a‘{f;mb —>: Optical| |Sensor }’Sampling : LR I?]age :
— bl [ PsF | D -
—————————— Noise
L
Fig.1 Image observation model
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2 MAP-based SR Algorithm

Based on MAP model the estimated HR image
from a sequence of LR images is given as:

X = arg max Pr(X | YisY2se e ¥p) . (2)
Based on the Bayesian principle, equation (2) can be
expressed as:

X = arg max(Pr(X) Pr(y,,5,,...%,1 X)) , (3)
where Pr ( X) represents the image prior probability
distribution, Pr(y,,y,,. - -
tional probability distribution of LR images. The condi-

y, | X) represents the condi-

tional probability distribution of the LR image y, is an
independent noise probability density function. Then,
the joint conditional probability density function of LR

images is given as:

Pr()’n)’z,u-ypl X) = (

1 P
«/211'0']‘)
Lol oy, —DHkMlelz)

exp( - Z

2
k=1 20']:

’ (4)

where o, is the standard deviation of n,. Based on
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Markov random field (MRF) model™’, the probability I,N,I,N,, and is given as;
density function of original image is given as: I, |[L,]], <a,
1 1 (o0 T = { o (10)
Pr(X) = ?exp{ - 55 ZPQ(LCX) } . (5) 0, otherwise.
Bt Then, the estimated SR image can be given by :
p(Z) = Zpa(zi) . (6) X = arg min E(X)
In the equation (5), parameters C and B are con- = arg min( i Iy, - DHM,X 11’
stants. p,(z) is the penalty function. In this paper, ) k=1
the penalty function is given as: Y z XL o, (X)L.X) . (1)
c=1

22, |lea9

pa(s) = { (7)

0, |z]>a

It can be seen that the proposed penalty function qua-
dratically penalizes small discontinuities in images
which are usually caused by noise and protects the
large discontinuities which are probably the edges. Pa-
rameter o is the penalty threshold that separates the
low-frequency and high-frequency. The second-order
derivatives in four directions are applied as the image
smooth measure. The kernels of the four operators

{L,}*_, are shown in Fig.2.

c

0 [os 0.5] 0
Li]2]1] [o]a]o ol-1]0
0s5(0o0 0] olos

Fig.2 The mask of second-order derivative in
four directions

B2 AT T B G R

Substituting equations (4) and (5) into (3), the
SR reconstruction problem can be expressed as minimi-

zing a cost function E(X) given as:

X = arg min E(X)
p
= arg min( 2 Iy, - DHMXI1?
=1
4 hNibN,
+A2, X po([LX])) . (8)
P B

The first term of E( X) represents the image fidelity,
and the second term is regularization term stands for
the image prior. A is the regularization parameter
which controls the trade-off between fidelity and prior
knowledge. The second term of E(X) can be simpli-

fied as:

4 LNibN,

Y X pa(lLX]) = R ALlp (LY, (9)

where ¢, (X) is a diagonal matrix with size [, N,[,N, X

3 Parameter Determinations

In this section, the penalty threshold o and
regularization parameter A were determined and the
Eq. (11) was solved by using gradient descent
method.

3.1 Choice of Penalty Threshold

Based on Eq. (9), penalty function only quadrat-
ically penalizes the pixel whose second-order derivative
is less than . Initially, the amounts of high-frequency
is very little, and then the initial value of o should be
very large for the purpose of restraining the noise effi-
ciently. With the progress of iteration, the high-fre-
quency components of image are restored and the noise
degree decreases, and the value of o should decrease
with the iteration process to protect the edge from being
blurry.

There are four high-pass filtering operators repre-

sented by {L
four penalty thresholds denoted by {a, ™ }*_, are up-

. }*_, operating on image X", and then
dated in the n-th iteration step. Since it is difficult to
determine the value of " directly, an indirect pa-

(n)

rameter b is introduced. And then o, is set based

on the following equation ;
(n)
Nag") (LcX ) - b(n)
[,NL,N, ’
where N, (L X ) stands for the number of the non-

zero value in diagonal matrix ¢, (X ) when the pen-

(12)

alty threshold is o,"”. When the value of 5" is set as
constant 1, the image prior is equivalent to Gaussian

™ is set as a linear func-

MRF prior. The parameter b
tion of n, which is given as:
b = b —q(n-1) , (13)

where b'" is the initial value set as 1. Parameter 5

stands for the step size set as 0. 01 empirically. To pre-
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vent the value of b from being too small, the value of b
is set to be not less than 0.6 generally.
3.2 Choice of Regularization Parameter

Instead of determining a constant regularization
parameter, this section proposed an iterative meth-
od that can adaptively estimate the regularization
parameter based on the estimated HR image. The
parameter A is a function of X, and represented by
A(X). A(X) should have the property that it can
adaptively control the balance of the fidelity term

p
2| | y, - DHM,X|1? and regularization term
=1

4 P
Y XL o, (X)L X. When Y || y, - DHM,X || is
c=1 k=1

large, A (X) should be larger so that the noise can be

restrained efficiently. In the other hand, when

4
Z XL, (X)L,X is large, A(X) should be smaller so
c=1

that the high-frequency components of image can be
protected. Motivated by the proposition above, an a-
daptive regularization parameter can be given by a log-

arithmic function:

P
Y ily, - DHMXI|?
A(X) = A-In| 2= +1]. (14)

D X (DLX
c=1

The logarithmic function used here can avoid making

regularization parameter too sensitive. Coefficient A is

estimated by the following function

dm = k=

P 4
> ( VE(X™))"M{H;D"(DHM,X™ -y,) + A(X™)( VE(X"))"( Y Lig (X )L,)X™
c=1

NixNy
z ‘[( ZLJ’k
N, x N, ’

where y, represents any one of the LR images. Here,

(15)

&

parameter £ can be described as the average of the sec-
ond-order derivative of LR image pixel. Then coeffi-
cient A can be given by

N, x N,
A=L X . (16)
&£

NyxNy
Z | (ZLJk |

3.3 Gradient Descent Optimization

The procedures of gradient descent optimum are
described as:

X = x™ - 4™ VE(X™) , (17)
where d'™ represents the n-th iteration step size.

Vi E(X) is approximately given as:

0= i 13- M 4400 - 3, W AL

~—2k2MTHTDTyk DHMX) + (X ZLC% LY . (18)

Substituting equation (18) into equation (17), the it-

eration procedure is given as:

P
X0 = X d -2k Y MUHD" (y, - DHM,X™)
k=1
4
X)) Y Lo (X)LX ™ , (19)
c=1

Step size d should satisfy the following equation ;
E(X™ - d™ VE(X™)) = ;nir(l)E(X(") -dVE(X™)) ,(20)

(n)

Substituting equation (18) into (20), d'" is given by:

4 P
(VE(XN'(Y Lip(X™)L,) VE(X™) + Y || DHM, VE(X™) 11>
c=1 k=1

4 Experiments

4.1 Simulation experiments

The simulated image sequences were obtained by
translating, blurring, and down-sampling the original
HR images including: “ Airfield” of size 256 x 256 and
“Bridge” of size 240 x 240,
Fig. 6 (a). First, original HR images were translated

shown in Fig. 4 (a) and

with different horizontal shift and vertical shift to pro-

duce four images. The process of blurring was simula-

ted by applying PSF of 5 x5 window size and 0. 5 vari-
ance. Then the blurred images were down-sampled
with a factor of 2. Lastly, zero-mean Gaussian noise
with three different power 10 dB, 15 dB and 20 dB was
added to the down-sampled images. The initialization
of X was given by the Bilinear interpolation ( BI)
method. The structural similarity ( SSIM) and peak
signal to noise ratio (PSNR) were used to evaluate the
objective quality of reconstructed SR images.

To verify the efficiency of the proposed method, it
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was compared with constant parameter method and
Gaussian MRF-based method™*’ represented by algo-
rithm I and algorithm II, respectively. Because it is
difficult to obtain the optimum constant parameters,
two sequences of constants A and constants b have been
tested in the case of noise power 10 dB as shown in
Fig. 3. The results show that for “Airfield” image the

optimum values of parameter A and parameter b are

(a) (b)

0.1 and 0.7 respectively, and for “bridge” image they
are 0.075 and 0.7 respectively. The values of PSNR
and SSIM are shown in Table 1. From Table 1, it is
observed that the proposed method can obtain better re-

sults than the others. The reconstructed images ob-

tained with different methods in the case of noise power
10 dB are shown in Fig.4 and Fig. 6. The detailed im-
ages of the results are shown in Fig.5 and Fig. 7. The

(CY]

results show that the proposed method can restore more
details than the constant parameter method and Gaussi-
an MRF-based method.

30 T T T T
k B = 8 - ; e
29.8 - . v d =
- (e) (f)
29.6 el
Fig.4 In the case of noise power 10 dB, SR reconstruc-
e 294 . « » s C .
Z tion results of the “airfield” image: (a) Original image;
/292

(b) LR image; (c) BI; (d) Algorithm I ; (e) Algo-
L rithm [ ; (f) Proposed algorithm
FEl 4 MR 10 dB A, “airfield” FI{4 /) SR L
F: () FIRER; () IR FRE R (o) WEHERE
(BB s(e) B T (H AR EME D
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Value of regularization parameter

Fig.3 PSNR versus the constant regulari- (d) O] ®)

zation parameter for “airfield” image (left)
and “bridge” image (right) in the case of
noise power 10 dB

Fig.5 Partially magnified images shown in Fig. 4. (a) O-
riginal image; (b) LR image; (c) BI; (d) Algorithm [I ;

s ; “ » (e) Algorithm [ ; (f) Proposed algorithm
3 %10 dB airfield
o e T S R4 IMAHOARIR : () BUATS s (b) 653
SRR SRR 5 () A () Bk T 5 (&) Bk 14(D)

ASCHR H BBk



13 YU Hui et al: A novel regularized adaptive edge-preserving image super-resolution algorithm 103

e) (1)

Fig. 6 In the case of noise power 10 dB, SR reconstruc-
tion results of the “bridge” image: (a) Original image;
(b) LR image; (c) BI; (d) Algorithm II; (e) Algo-
rithm [ ; (f) Proposed algorithm

K6 M 10 dB i}, “bridge” A SR H & 45
G () IR (0) R BERER; (o) WRHEHE
s (DEET (e) B L (H AR B NEE

The values of regularization parameter versus iter-
ation numbers are shown in Fig. 8. It is observed that
the regularization parameter decreases with the pro-
gress of iteration. When the degree of noise power is
higher, the regularization function adaptively selected
the larger value to restrict the noise efficiently. Con-
versely, when the power of noise gets lower, the regu-
larization function selected the lower value to preserve
the image details. The fidelity term and regularization
term normalized by the number of pixels are shown in
Fig. 9. Only the results from “ airfield” are given
since the results from “bridge” are similar to those

from “ airfield”. Figure 9 shows that the value of

P
2 Il y, - DHM,X ||? decreases with the progress
=1

(a) (®) (©

(@ © ()

Fig. 7 Partially magnified images shown in Fig. 6. (a) O-
riginal image; (b) LR image; (c) BI; (d) Algorithm II ;
(e) Algorithm [ ; (f) Proposed algorithm

E7 E6 iR ER : (a) FEAEER ; (b) K55t
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AR BN EE
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Fig.8 In the cases of different noise power,
the value of regularization parameter A ver-
sus iteration number for case of simulation ex-
periments. (a) airfield; (b) bridge

K8 FEANFREAENRELT EASHES
R B X R M L. (a) airfield; (b)
bridge
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of iteration and converges to a value close to the power
of noise. Then, as a by-product, the noise power can
be estimated by the proposed algorithm without any
prior information.

The number of terminative iteration for different
algorithm is shown in Table 2. It can be seen that the
number of iteration for using the proposed method is
the largest one which means that the proposed algo-
rithm preserves edge better at the cost of time-consu-
ming. Though the number of iteration for using fixed
regularization parameter is less than that for using pro-
posed method, the optimum regularization parameter is
obtained by testing a sequence of candidate values,

and it may cost more time.

100 : , 50 .
ey
- - 10dB e
E ool - 154B|| 45t ‘ 1
3 80 | | . 20 dB ! - 10 dB
M\ o) =]
3 TR |3 _w:\ /I{ oo ]
< 40f "\\R 1 304/ 4 1
I Lg e 4 m
2 0l A : 25}, sossoss |
§ 20F s
20 1
O 1 1
0 10 20 30 15 : :
0 10 20 30

Iteration number

Fig.9 For image “airfield” the values of fidelity term (left)
and prior term (right) versus the iteration number in the cases
of different noise power
B9 “airfield” R RMEFE T RE(Z2) FMIEAI () 11E
HEARBHXRIL

Table1 Values of PSNR and SSIM by using different algo-

rithm
®1 FAEEEERLSRE PSNR {71 SSIM &
BI Algorithm  Algorithm Pl‘Op{.)Sed
I I algorithm
10dB
PSNR Airfield 17.7146  28.9642  29.9150 29.9246
Bridge 18.8218  29.2947  30.4418 30.5756
SSIM Airfield 0.7906 0.9032 0.9184 0.929
Bridge 0.8015 0.9081 0.9198 0.9315
15dB
PSNR Airfield 17.6829  27.2827  28.3679 28.7946
Bridge 18.7624  28.1513  28.3944 28.9143
SSIM Airfield 0.7851 0.8977 0.9088 0.9172
Bridge 0.7964 0.8985 0.9083 0.9217
20dB
PSNR Airfield 17.5374  26.5237  26.6914 27.3587
Bridge 18.6307  26.4182  26.7786 27.6217
SSIM Airfield 0.7829 0.8804 0.8825 0.8933
Bridge 0.7953 0.8812 0.8819 0.8942

Table 2 Number of terminative iteration from different al-

gorithms
®2 AEEEEERRE

Algorithm Algorithm Proposed
I I algorithm

10 dB Airfield 17 20 25

Bridge 19 24 24

15dB Airfield 18 23 28

Bridge 21 26 26

Airfield 22 2 30

20 dB e 6
Bridge 25 28 31

4.2 Real experiments

In this section, the proposed algorithm was tested
on the real infrared image sequences of size 240 x 240
obtained by the infrared thermal imaging which has the
micro-scan architecture that can obtain the image with
subpixel motion of 0.5 pixel. For the case of using al-
gorithm I, the optimum values of b and A are set as
0.7 and 0. 1 respectively based on the simulation re-
sults. The SR reconstructed images from different algo-
rithms are shown in Fig. 10 and the detailed images of
the results are shown in Fig. 11. From the results it is
observed that the proposed method can restore more

image details than other methods.

© @

Fig. 10 SR reconstruction results of “vehicle”; (a) BI;
(b) Algorithm II; (c) Algorithm [ ; (d) Proposed algo-
rithm

B 10 “vehicle” B4R SR LR (a) WEMFHME
B5(0) BT 5(c) BT ;(d) ARBNEE
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(@) (b) (c) (d)

Fig. 11  Partially magnified images shown in Fig. 11.
(a) BI; (b) Algorithm II ; (¢) Algorithm [ ; (d) Pro-
posed algorithm

B11 B 10 HEER A BOREE: (a) MR HEMER;
(b) B3I ;(c) Bk 1 5(d) ARSCRHHHE L

5 Conclusions

In this paper, a novel adaptive regularization
method was proposed. The regularization term only pe-
nalizes the low-frequency components and protects the
high-frequency which may represent edge. The penalty
threshold is determined by a linear function. The regu-
larization parameter is adaptively selected by a logarith-
mic function based on the ratio of fidelity term and reg-
ularization term. The experimental results show that the
proposed method can preserve the edge well and obtain
better results than the Gaussian MRF-based method
and constant parameter method in both quantitative

term and visual effects.
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