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A nonuniformity correction method based
on Bayesian framework

QIAN Wei-Xian'** | REN Jian-Le'*, CHEN Qian'*, GU Guo-Hua'?
(1. Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing Univereity of Science and Technology, Nanjing 210094, China;
2. Key Laboratory of Photoelectronic Imaging Technology and System, Ministry of Education of China,
Nanjing University of Science and Technology, Nanjing 2100%, China)

Abstract :In this study, we have created a bridge, which can connect the reference-based NUC and scene-based NUC. The
right probability of the scene-based NUC parameters was calculated based on the Bayesian framework. The right probability
composed of prior and observation probability was used to determine whether the calculated scene-based NUC parameters
are suitable to correct the nonuniformity. The local same distribution constraint is defined in this paper, and the Infrared
Focal Plane (IRFPA) gain space relativity has been discovered from the reference-based parameters by this paper firstly.
The Bayesian prior probability is mainly determined by the local same distribution constraint, and the Bayesian observation
probability is mainly determined by the IRFPA gain space relativity. This method can effectively balance the relationship
between convergence speed and ghosting artifacts. Finally, the real and simulated infrared image sequences have been ap-
plied to demonstrate our algorithm’ s positive effect.
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. correction (NUC) algorithms. A number of researchers
Introduction .
have developed scene-based algorithms for NUC. D.

At present, convergence and ghosting artifacts are A. Secribner et al. introduced the LMS-based NUC al-

common problems in the scene-based nonuniformity gorithm''! and the temporal high-pass NUC algo-
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rithm'?). John G. Harris et al. introduced the Con-
stant-Statistics Constraint ( CS) NUC algorithmm.
Zhang et al. presented the local CS algorithm'*. Ser-
gio N. Torres et al. presented the NUC algorithm
based on Kalama filter*’. Marlene Shehadeh and Oleg
Kuybeda introduced the robust global motion estimation
technique for NUC'®.

space low-pass and temporal high-pass NUC algo-
[7-8]

Qian et al. introduced the

rithm' ™. In fact, convergence speed and ghosting ar-
tifacts still remain as bottleneck problems in the above
scene-based NUC algorithms.

Though a lot of works have been done, two core
problems, convergence speed and ghosting artifacts of
the scene-based NUC haven’t been solved. The scene-
based NUC calculates the nonuniformity parameters
through the interframe iterative mode. From the mathe-
matical point of view, the higher convergence speed
means the less frames to calculate the same precision
nonuniformity parameters. The higher convergence
means that the algorithm is more practical. The ghos-
ting artifacts are the wrong nonuniformity parameters
calculated by the scene-based NUC. From the statisti-
cal point of view, the convergence speed and ghosting
artifacts are the speed and precision of the nonunifor-
mity parameters estimation.

Till now, when doing the scene-based NUC, the
reference-based nonuniformity parameters havent been
carefully paid attention. When the traditional scene-
based NUC algorithms meet the bottleneck, we have to
pay attention to the ignored reference-based parame-
ters. The main idea of this paper is to introduce a
method, which can connect the scene-based parameters
and the reference-based parameters.

The main spirit of the method is the Bayesian
framework. The right probability of the scene-based
NUC parameters is introduced in this paper. The right
probability indicates whether the calculated scene-
based NUC parameters are accurate. The right proba-
bility is calculated from the Bayesian framework

This paper is organized as follows. In Section 2,
the local same distribution constraint is introduced. In
Section 3, the characteristic of IRFPA gain’ s space
relativity is described in detail. In Section 4, the cal-

culation of the NUC parameter right probability using

the Bayesian framework is presented. In Section 6 and
7, to test our algorithm’ s processing effect include
convergence speed the whole algorithm and experiments

are introduced, respectively.

1 From the constant-statistics constraint to
the local same distribution constraint

To make the CS algorithm'®’ more usable, the
same distribution constraint should be relaxed. We
change it to nearly same distribution in local region and

i

call it local same distribution. m, " s, " are the tem-

)81
poral mean and temporal standard deviation of the (i,
J) input data. The local region size is (20 +1) x (20
+1). The new constraint implies that the input distri-
bution into every pixel can only exists low-frequency
difference. Moreover, the low-frequency difference can

be eliminated.

1 i+oj+o
offseti’j(k) :mi’j(k) —mp;{o.;mﬂq(k) . (l)
1 ito j+o

gain, ; (k) =s,;(k)/ > Xs,,(k)

(20 +1)% 50 oS0 » (2)
m; (k) and S, (k) are the output of CS algorithm,
Egs. (1), and (2) can eliminate the low-frequency
difference of input distribution. If the space standard
deviation of mi,ji" and si,ji" in the (20 +1) x (20 +1)
local region are very small, it can be regarded as local

same distribution.

Define
Y, . (k
Yi,j(k)=[1w( )] , (3)
1/gain, ; (k)
.. k = i 4
6., (k) [—offset,-,,j(k)/gain,;’j(k)] )
The NUC output is
x, (k) =6,,(k)" =Y, (k) , (5)
x; ;(k) is the NUC processed data. Define
Yfir,j:§Yi,j(1)9Yi,,j(2))”"Yi,,j(k)% , (6)
0i=10.,(1),6,,(2) .0, (7)
xf,jz{xi,j(l)’xi,j(z),"’,xi,j(k)f , (8)

Yf,j is the known observed data, Hf,j and are the NUC
parameters which are calculated from ij It can be said
that if the input data obey the local same distribution
constraint , the right probability of 05“,]- will increase, oth-

erwise, the right probability of 05-‘,_,- will decrease.
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2 The IRFPA gain space relativity

In fact, human can easily judge the correctness of
the nonunifority parameters when they see the images
only containing the nonuniformity. From the point of
view of artificial intelligence, there must exist some al-
gorithms which can be used to judge the correctness of
the nonuniformity parameters. For simple, we use the
Gaussian distribution assumption of the characteristic
quantities to classify the correctness of the nonuniformi-
ty parameters.

We use the IRFPA ( Sofradir MARS long-wave-
length 320 x 256 HgCdTe) to capture black-body ima-
ges at different temperatures ( — 40 ~ 100°C ). These
images are regarded as the nonuniformity images with-
out scene. The gain at temperature can be derived by
the Eq. (9).

GAIN, (T) = [y, ,(T+AT) -y, (T-AT) ]/

1 ito j+o

ng’.n q;—n[y]”q( r-AT) -y,,(T-AT) ]
(9)

To distinguish with scene-based gain, ; (k), we
use GAIN, ;(T) to represent the reference-based gain
at temperature T. AT is the temperature increment. E-
quation (9) can be regard as the derivative of the re-
sponse curve at temperature T. In Eq. (9), gain at
(1,7) is divided by its local region mean. This process
can make the reference-based gain parameter distribute
around 1, and make GAIN, ; consistent with gain, ;.

The IRFPA response curve in T”s neighbor tem-
perature can be regard as linear. If AT is not too large,
its changing has little impact on gain; (7). AT(1%C)
and AT(2 °C) will obtain same gain, ;(T). So AT is
set 1°C and T is set { —39°C, - 38C, -37%C -,
98°C ,99C | .

ture T. o is set to 5.

Figure 1 is GAIN, ; at different tempera-

We can find that the gain changes very little in the
local region. So we begin to care about the space stand-
ard deviation of the gain at the local region. Equation
(10) is the local region standard deviation of the gain.

d; (T) = sdll,[GAIN, (T)] =

i+o j+o

i+o j+o

Y X {GAN,,(D-[ TS 6, 1)/ 1?1
p=i-og=jo g:i-of:;'-o . (10)
(20 +1)
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Fig. 1 ~ GAIN,; at different temperature (a) -
39C, (b) 10C, (b) 60C, (b) 99T

1 R T B GAIN, (a) -39C, (b)
10C, (b) 60T, (b) 99T

stdIT, ( ® ) is the operator to calculate local region
standard deviation at (i,j). d,;(T) is the (7,j) local
region standard deviation of the gain at temperature 7.
The local region size is (20 +1) x (20 +1). o is set
to 5. Figure 2 is d; ;(T)’s 3D image.

Then we calculated temperature mean and temper-
ature standard deviation of d, ;.

9
T;,wdi’j( T

mi,j = 139 ’ (11)

z I:di,,j(T) - m;,j]z

T=-39
Sdi,j = 139 ’ (12)

m, ; and sd, ; are the temperature mean and temperature

standard deviation of d; ;, respectively. Figure 3 (a)

i,j9
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Fig.2 d,;(T)’s 3D image (T=10C)
K2 d,(7)H=4%KI%(T=10T)

and (b) are the 3D images of temperature mean and

temperature standard deviation of d, ;, respectively.

Fig.3 3D image of d,;(a) temperature mean, and
(b) temperature standard deviation

K3 d i =4EE R (a) lEZEEE, (b)ilE
Selibr o 22

From Fig. 3, it can be seen that the value of the
local region standard deviation of the gain are very
small. It represents that the gain is very close in the lo-
cal region. We call it the space relativity of IRFPA
gain. Then a Gaussian distribution was used to repre-
sent the probability distribution of d, ;.

2
p(d,) = — exp[_M

—— ,(13)
V2 sd; sdid.z ]

p(d, ;) is the probability distribution of d, ; at pixel (i,
J). It can be said that the nonuniformity parameter of
MARS long-wavelength 320 x 256 HgCdTe IRPFA
should obey the distribution of Eq. (20).

2
exp| - (di,j - n;i,j)

1
V2w sd,; sd; ;

If the value of p(,;) is very small, it usually

p(0,;) = - (14)

means that the calculated nonuniformity parameter will

not be right.

3 The right probability of the NUC param-
eters

Using Egs. (1)-(4), the NUC parameters 0,
(k) can be got. But there will be a question whether
6,;(k) is reliable or not. If it is reliable, it can be
used to correct the nonuniformity and will not generate
the ghosting artifacts. Otherwise, it will generate the
ghosting artifacts. Here, k, ;(k) is created to represent
that 6, ;(k) is correct. p[«,;(k) ] is the right proba-
bility of 6, ;(k). Because Yf] and @, ;(k) can be regar-
ded as the known data, p[ k; ;(k) ] can be represented
by a conditional probability p[ «, ;(k) ‘ 6,;(k), Yﬁj] .

According to the Bayesian theory'’’

P[Ki,,-(k)\aw(k) i) =

ple, (k) [V 1pL 0, (k) |k, (k) ,Yi,]
>oplu, (k) [V 1pL6,, (k) |k, (k) , Y]
oc plwe,; (k) [Y: pL6,;(k) | i, (k)Y ], (15)
here,p[ «, (k) | Y:,] is the prior probability and p[ 6,
(k) ‘Ki‘j(k) Y

s i,

] is the observation probability. p
[k ;(k) \ ij] means when we only know Y’Zf’j, what is

the right probability of 6, ;(k) according to our experi-
ence. p[ 0, (k) |k ;(k),Y;;] means when Y!

P18
known and 6, (k) is regarded as right, what is the
probability that 6, ;(k) take current value.

We first design the prior probability. p[ «;;(k -
1) | 0,;(k-1), Yf";l ] is the posterior probability in
frame k£ — 1. The experience of the right probability in
frame k should first come from the posterior right prob-
ability in frame k —1.

The prior probability should be related with the lo-
cal same distribution constraint. Direct calculaton of

m:"] and s;?j is difficult. So we use the space standard
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deviation of y; (k) to approximately represent the local
same distribution constraint. If (i,7) lies in the strong
edge region, it is usually hard to satisfy the local same
distribution constraint. The space local standard devia-
tion of (7,/) can be used to represent the intensity of
the edge region'""*.

I, [, (k)]
B 01,4 (i )
Pl Y, (k) ] is the local same distribution probability.

Pz.uz[Yi,,’(k)] = exp , (16)

If (7,7) lies in the strong edge region, the value of p,,
[Y, (k)] will be small. stdIT,( ® ) is the operator to

calculate (7,j) space local standard deviation.

sthU[Y,J(k)} =
Y ®m-[Y 3y h/e]f
p=t-0q=j-o0 g:i—ﬂf:j;) . ( 17 )
(20 +1)

Same as above, the local region size is (20 +1)
x(20+1). o,,(i,7) is the local standard deviation
of a image, while this image must obey the local same
distribution constraint. A clean sky image is a good
choice. Select one clean sky image, and calculate its
local standard deviation o, (i,j) by Eq. (17).

According to above description, the probability p
[ki;(k=1)16,;(k-1) ,Yf,;l ] in frame k — 1 first
comes from p[«,; (k-2)[6,,(k-2),Y::*]. If p,,
[Y,;(k)] is one element of p[«, (k) \ Yf,j] , it will
mean

Pl (0 1Y) e p [ ¥, (B) Tpu [ Y., (k= 1)]

(18)

Equation(18) means that, if (i,7) always lies in

the strong edge region, the probability of local same
distribution will be very small.

If the value of (i,j) changes very little in time
domain, it usually means that the IRFPA does not
move. Then 6, (k) calculated from these data will
lead to a wrong result. Define'*" "

P Yij(k=n +1:k)] =

1 sy, ;(k-n+1:k)] >0,
0 stdly,;(k-n+1:k)] <o,
Pl Yi;(k=n+1:k)] is the probability whether the
IRFPA has moved. std( ® ) is the operator to calculate

, (19)

(1,j) temporal standard deviation from frame £ —n + 1

to frame k. o, is a threshold of the temporal standard

mv

deviation. ¢,, must be larger than the standard devia-

tion of the dynamic noise o Usually set o,, =

noise *

30 i Vi (k=n+1:k) is (i,j)'s value from frame k

—-n+1 to frame k.

std[y, (k-n+1:k)] =

\/I,LZ‘”H [yi,j(P) - [q:kglﬂyi,j(Q)/n]]z

n

(20)

And the final prior probability p [ «;; (k) ‘ Yﬁj ]

should be the combination of p [ ki, (k - 1)
ei,j(k -1), Yf;l 1, Praand p, .

ple (k) Y, ) =plw,;(k=1)[0,,(k=1),Y "]

Pral Yy (k) Ip,, [V (k=n+1:k) ] .21

When the prior probability has been designed, the

next task is to design the observation probability. In
fact, we have already designed the observation proba-
bility. Equation (14) in Section 3 is the observation

probabilityof the nonuniformity parameter.

p[ei,j(k)Ki,j(k) ’Y,k,] =

2
1 exp[_ (dz](k) _zmi,j) ] ’ (22)
V2msd, sd; ;
and
d; ;(k) = stdIl,[ gain, (k)] =
i+o j+o i+to j+o
Y Y fain, (1) - [ gin, (1)/(20 + 1) ]f
p=i-0oq=j-0 g=i-of=j-0 A
(20 41)°
(23)

Equation (24) means that according to the space
relativity of the IRFPA gain, the gain parameters in lo-
cal region will change very small. If the gain changes
evidently, the right probability should be very small.

0,;(k) is calculated from frame k& —n +1 to k.
When the right probability p [« (k) |6, (k) ,I/iJk ] is

gotten, it can be used to update the final NUC parame-

ters. i, ;(k) is defined as the NUC parameters which are
finally used to correct the nonuniformitym. 4, ; (k) should
be updated by 6, ;(k)’s right probability.

Bk =0, (b =1) 11 =pLiy (B) | 6,,(k) Y, +
0, (k)plr,, (k) |6,,(k),Y, "] .24

4 Experiments and results

In order to evaluate the processing effect, a real

image sequences S' = {I},I5,--I, -+ iy} (acquired
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at the rate 50 Hz by Sofradir MARS long-wavelength
320 x256 HgCdTe IRFPA) was used to verify our al-
gorithm. These images contain sky-scene and ground-
scene.

We compared the Bayesian CS algorithm with the
CS algorithm at the sky scene. Figure 4 is the compari-
son of two algorithms at the 20th frame. Twenty frames
are enough for Bayesian CS algorithm to converge,
while the CS algorithm can not converge with only 20
frames. In this IRFPA, o is 3.
When O is set larger than 5, its effect is the same as O
=5. So we set 0 =5.

n is set to 20.

noise

(2) (®)
©

Fig.4 Comparison of two algorithms at the 20th frame ( sky-
scene) (a) original image, (b) the CS algorithm, and (c)
the Bayesian CS algorithm.

K4 PR AR BEACR LU (26 20 i, RA5E ) (a) Ji
kMg, (b) CSHEAMBR, (c) Bayesian CS Fpkibh
TR

Figure 5 is comparison of two algorithms at the sky
and ground scene. The CS algorithm has serious ghos-
ting artifacts, while the Bayesian CS algorithm has al-
most no ghosting artifacts.

Figure 6 is the right probability of Bayesian CS al-
gorithm of Fig. 5. The right probability in the sky is
high, while the right probability in the ground is very
small. This determines that the Bayesian CS algo-
rithm’ s right probability is high at the sky-scene and
low at the ground-scene. Usually, the nonuniformity is

very serious in the sky, while it almost can not be seen

Fig. 5 Two algorithms’ comparison at the sky and ground
scene. (a) original image, (b) the CS algorithm, and (c) the
Bayesian CS algorithm

K5 PIRRTE A BACR A (RIS 5) (a) RIS,
(b) CS FIEALFIHCR, (c) Bayesian CS HikARPIACR

in the ground. So, it can be seen that the Bayesian CS

algorithm will be very effective in the real application.

Fig.6 The right probability of the Bayesian CS algorithm
5 6 Bayesian CS & kB AR 51 S HOE AR

It is easy to calculate the NUC parameters in the
sky-scene, and difficult in the ground-scene. So we will
pay much more attention to the ground-scene. We use a
real image sequence S* = {I; 5 ,---I; -~ [}y | to ana-
lyze our algorithm, and these are ground-scene images
without nonuniformity. The virtual nonuniformity is add-
ed to these images. The nonuniformity gain obeys
Gaussian distribution (mean is 1 and standard deviation

is 0.005) , offset obeys Gaussian distribution (mean is
0 and standard deviation is 6). Set m;; =0.005 and
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sd; ; =0.005. Figure 7 is the processing result.

(a) (b)

© (d)

Fig.7 Processing Result of real image with virtual nonuni-
formity (a) original image without nonuniformity, (b) origi-
nal image added with nonuniformity, (c) the CS algorithm,
and (d) the Bayesian CS algorithm

K7 ES RS IR S PR A B PECR (a)
IR A B AR S PERE S, (b) LR TR B & AR 2 1
W, (c) CSATRALPEIACR, (d) Bayesian CS Fikfb Bl
ROR

From Fig. 7, it can be seen that the CS algorithm
has serious ghosting artifacts in the complex ground-
scene. While the Bayesian CS algorithm can effectively
eliminate the nonunformity and has no ghosting arti-
facts. We use MSE to compare the processed re-
sult!'")

Figure 8 shows variations two algorithms’ MSE
with time.

It can be seen that after 250 frames, the Bayes-
ian CS algorithm begin to converge, while the CS algo-
rithm can not. The Bayesian CS algorithm uses tens of
frames to converge in the sky-scene, and hundreds of
frames in the ground-scene. This adaptive control

comes from the Bayesian right probability.

5 Conclusions

The connection between the scene-based parame-
ters and the reference-based parameters has been pres-
ented in this paper, which is the Bayesian right proba-
bility. The convergence speed and ghosting artifacts of

the estimates obtained were derived and verified by

Comparision of two algorithm MSE

16
14}
12}
Ccs
10}
g s
=
6
al BAYESIAN CS
2 L B
0

0 Sb 160 15lO 260 230 360 350 400 450 500
frame

Fig.8 The MSE chang of the two algorithms’ with
frames

18 PIRRGkA MSE Fifiii i) 242 4k i £&

simulations. The calibration results of our algorithm
were also demonstrated using real and simulated infra-
red image sequences, and the experiments verified our
algorithm’ s good effect.

The nonuniformity space relativity characteristic of
gain summarized by this paper is a very important char-
acteristic, and makes more contribution to the nonuni-
formity correction.

The right probability can determine whether the
calculated scene-based NUC parameters are correct or
not. According to the mechanism of the Bayesian right
probability, we can construct the right probability for
other NUC algorithms, such as the LMS NUC algorithm
and etc. And last but not least, the Bayesian right
probability can be constructed as a connection to link
different scene-based NUC algorithms. The combina-
tion of different NUC algorithms can help each other
and get better processing effect together.
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