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An InGaAs/InP W-band dynamic frequency divider
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Abstract ; An ultra-high-speed 2: 1 dynamic frequency divider based on clocked-inverter was designed and fabricated u-
sing our own f; =214 GHz, f, .. =193 GHz InGaAs/InP heterojunction bipolar transistor technology. The frequency di-
vider was designed to operate from 60 GHz to 100 GHz. However, it was only demonstrated from 62 GHz to 83 GHz,
due to the limitation of the measurement system. The circuit consumed 1060. 8 mW with a supply voltage of -5.2 V and
596.4 mW with a reduced supply voltage of 4.2 V. The successful fabrication of the divider was of great importance on
building a phase-locked loop operating at W band.
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Introduction

Recently, the rapidly increasing demands for
millimeter-wave applications, like 60 GHz broadband
communication networks, 77 GHz automotive radar
systems and 94 GHz millimeter-wave imaging de-
vices, have driven the development of cost effective
and high performance millimeter-wave frequency
sources such as high frequency phase-locked loop
(PLL). The high-speed frequency divider plays a
crucial role in implementing high frequency PLL and
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can be divided into two types, including static ones
based on master-slave flip-flop ( MS-FF), and dy-
namic ones. Although the static ones operating up to
200 GHz have been demonstrated''! | the dynamic fre-
quency divider usually has higher speed and provides
higher data rates. There are two categories of dynam-
ic frequency divider (DFD), the analog divider and
the digital divider. The regenerative frequency divider
(RFD) and the injection locked oscillator frequency
divider (ILOFD) are well known as analog frequency
dividers. The digital clocked-inverted toggle flip-flop
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(CI-TFF) structure, which eliminates the latch from
the MS-FF structure, is often preferred and typically
shows much higher operation speed than static struc-
tures. With an operation speed trade-off, compared
with those analog structures, CI-TFF structure can
provide broader frequency bandwidth without tuning
the bias condition.

Besides structures of the dividers, various device
technology used in the high-speed dynamic frequency
divider design have experienced a significant develop-
ment and supported the enhancement of the high-
speed frequency divider performance. For example,
using InP HBT technology, a 330 GHz frequency di-
vider design has been published'>’ and regenerative di-
viders in SiGe HEMT technology, operating up to
168 GHz have also been reported"’.
benefit from the enhanced device process as well as

These circuits

the elaborate design of the interconnections.

The design and demonstration of a 40 GHz static
frequency divider has been reported in our early pa-
per'*). It can be used in the design of a PLL in Ka-
band. In this paper, we present a 2: 1 dynamic fre-
quency divider in our own InGaAs/InP heterojunction
bipolar transistor process. The frequency divider em-
ployed clocked-inverted toggle flip-flop ( CI-TFF),
and was tested to operate from 62 GHz up to 83 GHz
(limited by the available Spectrum analyzer). The
successful fabrication of the divider was of great im-
portance on building a phase-locked loop (PLL) op-
erating at W band.

1 InP DHBT Technology

In the fabrication of the dynamic frequency divi-
der, the InP HBT technology with emitter width of 1
pm was used. The epitaxial layers consist of a 40 nm
carbon-doped base layer and a composite collector.
Details concerning the epitaxial layer design and radio
frequency ( RF) characteristics of the InGaAs/InP
HBTs employed in the CI-TFF dynamic dividers can
be found in References'*”’.

The HBT IC process included thin-film resistors
(500/sq), MIM capacitor, 2-level of interconnect
(M1, M2), Benzocyclobutene ( BCB) passivation of
the devices and planarization of the wafer after device
formation. Coplanar waveguide wiring ( CPW ) was
employed for its predictable characteristics, controlla-
ble impedance and ability to maintain signal integrity
at very high frequencies within dense mixed-signal
ICs. S-parameter measurements of the HBT demon-

strated an extrapolated current gain cutoff frequency
of 214 GHz and an extrapolated maximum oscillation
frequency of 193 GHz, at the bias of Ic =30.5 mA
and Vo, = 1.5 V. The circuit operating bias point
should be optimized so as for the critical HBTs to a-
chieve the highest f, value.

The chip microphotograph is shown in Fig. 1.
The area of the chip is 924 pm x717 pm.

Fig. 1 Chip
photo of the dy-
namic frequency
divider
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2 IC Design

The HBT device model used in our circuit was

(891 As shown in

discussed in detail in References
Fig. 2, the divider architecture consists of a transform-
er, an input buffer, a frequency divider core, and an

output buffer.

|
2500

IN Frequency E()utpu OUT+
Transformer Divider Core OUT-

Fig.2 Block diagram of the dynamic frequency divider
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2.1 Transformer

When the high frequency divider is employed as
a component in a complicated system or instrumenta-
tion, a single-ended input requires the least external
components and finally reduces overall system cost.
Meanwhile, considering the convenience of testing,
single-ended input signal is usually preferred. Howev-
er, the clock signals of the frequency divider core are
differential, so the on-chip input network must conse-
quently consist of a transformer converting the single-
ended input signal to a differential signal. Due to the
finite frequency performance of the device, an active
transformer can not bring into high-quality balanced
signals of opposite phase in W-band frequencies. For

[10-11]

that reason, a passive Marchand balun shown in
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Fig. 1 was designed and adopted. The length, width
and the gap were optimized to obtain promising cou-
pling and finally low transformer loss ( S21, S31)
through momentum electromagnetic (EM) simulation
in Agilents Advanced Design System ( ADS).
2.2 Input buffer

The schematic of the input buffer of the divider
is shown in Fig. 3. Three stage differential emitter
followers are adopted here. The saturation of the dif-
ferential pairs of the core part is thus avoided by shift-
ing the input signal levels, before the signals are con-

nected to the input terminals of the clock pair.

IN+ L
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—Q!
Q2
—Q2
Q3
Q3
Bias Clock+
Clock-
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Fig.3 Input buffer for the frequency divider circuits
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2.3 Dynamic divider core

Adoping the clocked-inverted TFF ( CI-TFF)
structure, the dynamic frequency divider core is com-
posed of two clocked inverters (Fig.4).

To operate at high frequency with low power dis-
sipation, the R, ,,, the current and the logic swing C.,
AVig/1, of the divider should be traded off. The
HBTs of the critical part should operate at bias of Ic =
30.5 mA and V; =1.5 V so as to achieve the highest
fr value. To reduce the parasitic capacitance and in-
ductance which ultimately slow down the divider, it is
critical to construct the divider layout compactly. The
frequency divider core was symmetrically laid out and
the transistors in the flip-flop were oriented to mini-
mize the critical feedback path of the flip-flop as well
as other less critical signal paths.

2.4 Output buffer

The circuit also contains an output buffer ( Fig.

Rload Rloud

—Q10

s

Fig.4 Schematic of the frequency divider core
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5) to drive 50 ) loads. Q16 serves as a level shifter
for the subsequent differential pair. Simulations have
shown that a cascade of two emitter followers tends to
ring if its input lead length exceeds approximately 200
pm. Therefore, we have used single emitter follower

as the output buffer.

VEE

Fig.5 Output buffer for the frequency divider circuits
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The distribution effects of the passive compo-
nents were considered by momentum electromagnetic
(EM) simulator in Agilents Advanced Design System
(ADS). The output frequency spectrums were shown
in Fig. 6. The simulated frequency bandwidth of the
CI-TFF was from 60 GHz to 100 GHz. The power

consumption was 1005 mW with a single -5 V sup-

ply.
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Fig. 6 The simulated output spectrums of the dynamic
frequency divider
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3 Measurements, results and discussion

The frequency divider was characterized at room
temperature of 25 C, by the on-wafer test setup
shown in Fig.7. The input signal was generated by a
signal generator ( E8257D, 250 kHz ~40 GHz, PSG
analog signal generator) and multiplied by a frequen-
cy multiplier ( FES-10 Frequency SOURCE 75 ~ 110

GHz, Farran tech) subsequently. The maximum in-
put power of the W-band source can be 5 dBm. The
frequency band of the source was decided by the mul-
tiplier, which was 75 ~ 110 GHz.
trums of the frequency divider were monitored by
spectrum analyzer ( E4447A, 3 Hz ~ 42. 98 GHz,
PSA series). For Fig.8 (a) the divider was biased at
Vg = —4.2V, I;; =142 mA, consuming 596.4 mW
dc power (P, ) and biased at V,, =-5.2 V, I, =204
mA, consuming 1060.8 mW P, for Fig.8 (b) (c¢)
(d). The measured operating frequency bandwidth of
the CI-TFF was from 62 GHz to at least 83 GHz. We

can not measure the IC performance beyond 83 GHz,

The output spec-

due to the spectrum analyzer limitation. The divider
was not functional at frequencies below 62 GHz. The

measured output spectrums were shown in Fig. 8.

Signal Ly Multiplier Spectrum
generator analyzer
E8257D FES-10 E4447A
Fig.7 On-wafer divider test setup
B7 oaste i MRS

The divider was designed and measured with sin-
gle-ended output signal, and the complementary out-
put was left unconnected. The input signal power was
about -5 dBm. The measurement was performed using
the input waveguide and the output coaxial line. The

calibration of waveguide and probe was not done in

the measurement, which would induce a loss of 5 dB
approximately. Specifically, the output spectrum
shown in Fig.8 (a) was obviously lower than others,
and the reason was that the divider in Fig. 8 (a) oper-
ated at the frequency of 62 GHz which was below the
lower frequency limit of the multiplier (75 GHz),
thus the multiplier s transmission loss should be very
high. In addition, it seems that the output power is
lower than that simulated. The first reason may be the
uncertainty of the power in our measurement. Another
reason may be that all the passive elements and wir-
ings were modeled by 2. 5-D electromagnetic simula-
tions of momentum electromagnetic (EM) simulator
in Agilents Advanced Design System ( ADS). It was

difficult to set the substrate the same as the actual
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Fig.8 The measured output spectrums of the divider
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one. This may result in the difference between the
simulation and measurement. A further investigation
is necessary to identify the specific reason.

To improve the performance and the simulation
accuracy of the divider, inverted-microstrip line

(IMSL ) process could be introduced to provide a

ground layer for interconnection, which can increase
the precision of the simulation. Meanwhile, more in-
terconnection layers can be used to shorten the critical
feedback path of the divider and other signal paths.
Finally, in the simulation, more attention must be
paid to the impedance matching, such as matching be-
tween the input buffer and the balun, to reduce return
loss.

Comparing with the dynamic divider reported in

the references' '™

, the divider in this work consumes
more power. It needs to decrease the emitter area to
reduce the power consumption. However, the suc-
cessful fabrication of the divider is of great importance
on building a phase-locked loop ( PLL) operating at

W band.
4 Conclusions

A W-band ultra high-speed dynamic frequency
divider was designed and fabricated in our own HBT
technology. The divider IC employed a clocked-in-
verted configuration with a maximum operating speed
of at least 83 GHz. In order to further enhance the
operating speed, the reduction of the internal logic
swing and the use of clocked-inverted feed forward
TFF structure may be effective. To reduce the dc
power consumption, it would be helpful to bias the
core and the other parts of the divider separately and
optimize the size of HBTs in different parts respec-
tively. The measurement results indicated that our InP
DHBT technology is promising for W-band IC appli-
cations.
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