摘要
创新设计了一款操作灵活、方便、适于生物医学原位检测的反射式近红外(NIR)光纤探头,通过将自聚焦透镜耦合到NIR光纤探头的顶端,并对探头结构、光纤排布进行全新设计,使光纤探头具有更高的测量精度和收集效率。通过耦合傅里叶变换近红外光谱仪对蔗糖样本进行NIR光谱采集,发现该反射式NIR光纤探头具有高效便捷的特点以及较高的光谱重复性和信噪比。采用该光纤探头对犬膝关节股骨端关节软骨进行NIR光谱离体原位检测,这些光谱数据经一阶导数2次多项式21点Savitzky-Golay平滑预处理后再进行主成分分析和Fisher判别分析。模型初始案例和交互验证案例正确识别率分别为97.62%、90.47%,样本预测集的识别率达96.43%,证明了采用该NIR光纤探头进行NIR光谱原位检测的有效性及骨关节炎识别的可行性,可为骨关节炎的临床诊断奠定实验基础。
关节软骨是覆盖于骨关节表面的半透明、光滑的结缔组织,具有弹性和韧性,能减少关节面间的摩擦、承受高负荷和缓冲震
傅里叶变换近红外(FTNIR)光谱技术近年来因为其分析速度快、成本低、易于穿透组织并含有对应组织成分信息等特点而发展应用较为迅速,已被用于手术导航、无损检测和疾病诊断等各个领域。近红外(NIR)光谱范围内的光谱吸收主要来自X-H键伸缩振动的合频和倍频(X为O、C、N和S等),不同的基团或是同一基团在不同的化学环境中的NIR吸收的波长和强度存在差
光纤一般包括3层:中心是高折射率玻璃芯(纤芯)、中间为低折射率硅玻璃包层、最外层是树脂涂覆层,它具有柔性光导、热稳定性、对电磁干扰不敏感、传输信号能量集中、价格低廉等特点。基于光纤构造的NIR探头结构简单、使用灵活,是光谱仪的有效补充配件,备受各行业的青睐。而漫反射式NIR光纤探头可以用来测量多种类型样本(如:较厚、不透明样本),并适用于医疗环境中的生物组织进行异常或疾病诊
主成分分析(PCA)是一种通过降维技术从多个原始数据提取重要信息的分析方法。为了尽量减少变量和研究对象数据信息的损失,多选取累计贡献率达85%以上主因子作为主成分分
目前国内外采用NIR光谱技术对OA病变诊断的研究鲜有报道,且多采用NIR光纤探头对关节软骨的厚度以及功能特性进行研
用于NIR光谱分析的比格犬的膝关节样本,均由江苏南京亚东实验动物研究中心提供,并经伦理审查机构批准。选择8只健康比格犬,对其中编号Y1、Y2、Y3的犬左后腿膝关节股骨端进行原位提取,获取3只健康样本;对编号Y4、Y5、Y6、Y7、Y8的犬进行任一单后腿的膝关节前交叉韧带横切(ACL)手术
探头探测端的设计是整个光纤探头设计的核心,该探头采用分叉光纤束检测NIR光谱,包括6根出射光纤和13根入射光纤且参数相同(近红外光优化石英光纤FIP300330370:芯径300 μm、包层直径330 μm、涂覆层直径370 μm,数值孔径NA为0.22 ± 0.02)。具体结构如

图1 NIR光纤探头的整体结构示意图
Fig. 1 Overall structure diagram of NIR fiber probe

图2 (a)出射光纤与入射光纤顶端的端面示意图,(b)6根出射光纤的末端端面排布示意图,(c)13根入射光纤末端端面排布示意图
Fig. 2 (a) Schematic diagrams of the top end of the exit and entrance optical fibers, (b) the end face arrangement of 6 exit optical fibers, (c) the end face arrangement of 13 incident optical fibers
分束处保护套设置在出射光纤与入射光纤分开与合并的过渡区,以避免操作过程中纤芯折断,分束后的光纤束均由光纤保护套包裹。手柄套包裹在自聚焦透镜上,防止自聚焦透镜损坏且手柄套的材质为不锈钢材料,降低了探测端的光源能量损失。光纤跳线通过SMA905接口与装置的光纤连接器相连,便于光纤探头的拆卸。以上探头设计已获专利授
仿真环节是基于ZEMAX光学软件中混合模式建立仿真模型,选用的自聚焦透镜同实际组件,直径为2 mm。为方便模型的建立,在保证重要参数的情况下对模型进行简化,综合考虑,对参数进行如下设置:总光源能量6 W,波长1550 nm,分析光线数20万;光纤长度1 cm,在光纤出射端0.01 mm处放一与纤芯直径等边长的矩形探测器。分别按照空间坐标在出射光纤的位置放置光纤模型,统计6根出射光纤出射端的总能量,即是反映光纤探头仿真收集效率的参数。
将所设计的NIR光纤探头通过自制的固定耦合设

图3 NIR光纤探头联用FTNIR系统装置图
Fig. 3 Setting photo of NIR fiber probe coupled with FTNIR system
光谱的信噪比(S/N)评估和预处理(基线校正(BC)、一阶导数2次多项式21点Savitzky-Golay平滑(
与文献报到的已有探
自聚焦透镜与光纤束顶端的距离也是影响信号收集效率的一个因素,所以须做进一步的仿真。
从
综上所述,在NIR光纤探头直径允许的情况下,纤芯直径为0.3 mm时,涂覆层直径越小,光纤探头中自聚焦透镜与光纤束贴合时出射光纤收集能量最高,即收集效率最高,此结果可以作为NIR光纤探头光纤参数选择的依据。

图4 (a)蔗糖粉末的常规透射FTNIR光谱和光纤-FTNIR光谱,(b)蔗糖(粉末)相同位置经10次重复测量的光纤-FTNIR光谱
Fig. 4 (a) Conventional transmission FTNIR spectra and optical fiber - FTNIR spectra of sucrose powder, (b) optical fiber -FTNIR spectra of sucrose powder by 10-time repeated measurement at same position
由
综上所述,通过对蔗糖样本的常规透射FTNIR光谱和光纤-FTNIR光谱对比,及探头重复性的分析实验,证实了NIR光纤探头检测无需样本预处理即可获得全面充分的光谱信息且光谱稳定、可重复性较高的优点、适用于样本的原位检测。

图5 基线校正(BC)(a)和二阶导数(
Fig. 5 Average in-situ NIR spectra of articular cartilage (Health and OA tissues) BC (a) and second derivative (
经
从
FDA过程中,出现的参数Wilk’s Lambda是组内的平方和与总平方的比,范围从0到1。Wilk’s Lambda值越低,说明类间差异就越
本文通过优化光纤束排列并耦合自聚焦透镜创新设计了一款操作灵活、方便、适于生物医学原位检测的反射式NIR光纤探头,可以更高效地收集样品信息、获得高质量的NIR光谱。较小的探测端直径有利于本探头实现NIR原位微区测量。比较蔗糖样本透、反射的NIR光谱,发现该探头在对目标组织的光谱测量中具有足够的可靠性和可重复性。本探头与FTNIR光谱仪联用对离体关节软骨进行原位光谱检测,经
References
Soltz M A, Wang C C, Wong D D, et al. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels [J]. Journal of Biomechanical Engineering, 2000, 122(3): 252-260. 10.1115/1.429656 [百度学术]
Kuettner K E. Biochemistry of articular cartilage in health and disease [J]. Clinical Biochemistry, 1992, 25(3): 155-63. 10.1016/0009-9120(92)90224-g [百度学术]
Buckwalter J A, Mankin H J. Articular cartilage: tissue design and chondrocyte-matrix interactions [J]. Instructional Course Lectures, 1998, 47(4): 477-486. [百度学术]
Wilson W, HuygheC J M. Depth-dependent compressive equilibrium properties of articular cartilage explained by its composition [J]. Biomechanics & Modeling in Mechanobiology, 2007, 6(1-2): 43-53. 10.1007/s10237-006-0044-z [百度学术]
Chen S S, Falcovitz Y H, Schneiderman R, et al. Depth-dependent compressive properties of normal aged human femoral head articular cartilage: relationship to fixed charge density [J]. Osteoarthritis and Cartilage, 2001, 9(6): 561–569. 10.1053/joca.2001.0424 [百度学术]
Xia Y, Alhadlaq H, Ramakrishnan N, et al. Molecular and morphological adaptations in compressed articular cartilage by polarized light microscopy and Fourier-transform infrared imaging [J]. Journal of Structural Biology, 2008, 164(1): 0-95. 10.1016/j.jsb.2008.06.009 [百度学术]
Tan A, Mitra A, Chang P, et al. Assessment of blood-induced cartilage damage in rabbit knees using scanning electron microscopy [J]. Journal of Orthopaedic Surgery, 2004, 12(2): 199-204. 10.1177/230949900401200212 [百度学术]
Kennedy J F, ThomasJ B, Svoronos P D N. CRC handbook of fundamental spectroscopic correlation charts [J]. Carbohydrate Polymers, 2007, 67(4): 648-648. 10.1016/j.carbpol.2006.09.018 [百度学术]
CHEN Yan-Ping, LI Chun-Bin, WANG Xiao-Ling, et al. Detection of knee osteoarthritis with near infrared spectroscopy in vivo[J]. Journal of Optoelectronics∙Laser (陈延平,李纯彬,王晓玲,等。 膝骨性关节炎的在体近红外光谱检测。 光电子·激光) 2014, 25(05):1023-1026. 10.2495/hhme130281 [百度学术]
Brown C P, Jayadev C, Glyn-Jones S, et al. Characterization of early stage cartilage degradation using diffuse reflectance near infrared spectroscopy [J]. Physics in Medicine & Biology, 2011, 56(7):2299-2307. 10.1088/0031-9155/56/7/024 [百度学术]
CHU Xiao-Li. Molecular spectroscopy analytical technology combined with chemometrics and its applications [M]. Beijing: Chemical Industry Press [百度学术]
褚小立. 化学计量学方法与分子光谱分析技术. 北京:化学工业出版社), 2011: 281-283. [百度学术]
Sarin J K, Te Moller N C R, Mancini I A D, et al. Arthroscopic near infrared spectroscopy enables simultaneous quantitative evaluation of articular cartilage and subchondral bone in vivo [J]. Scientific Reports, 2018, 8(1):13409. 10.1038/s41598-018-31670-5 [百度学术]
Afara I O, Prasadam I, Crawford R, et al. Near infrared (NIR) absorption spectra correlates with subchondral bone micro-CT parameters in osteoarthritic rat models [J]. Bone, 2013, 53(2):350-357. 10.1016/j.bone.2012.12.042 [百度学术]
TAN Jiu-Bin, ZHANG Jie. Recent research activities and trend of grin lens and its application [J]. Journal of Optoelectronics·Laser [百度学术]
谭久彬, 张杰. 自聚焦透镜在传感应用中的研究进展。 光电子·激光), 2001, 12(09):108-112. [百度学术]
ZHANG Qiang. Application of GRIN lens in optical fiber coupling system [D]. (张强. 梯度折射率透镜在光纤耦合系统中的应用). 西安电子科技大学, 2008. [百度学术]
Rusak D A , Brown L M , Martin S D. Classification of vegetable oils by principal component analysis of FTIR spectra[J]. Journal of Chemical Education, 2003, 80(5):541-543. 10.1021/ed080p541 [百度学术]
Chiang L H, Russell E L, Braatz R D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis [J]. Chemometrics & Intelligent Laboratory Systems, 2000, 50(2): 243-252. 10.1016/S0169-7439(99)00061-1 [百度学术]
Padalkar M V, Spencer R G, Pleshko N. Near infrared spectroscopic evaluation of water in hyaline cartilage [J]. Annals of Biomedical Engineering, 2013, 41(11):2426-2436. 10.1007/s10439-013-0844-0 [百度学术]
Sarin J K, Amissah M, Brommer H, et al. Near infrared spectroscopic mapping of functional properties of equine articular cartilage [J]. Annals of Biomedical Engineering, 2016, 44(11):3335-3345. 10.1007/s10439-016-1659-6 [百度学术]
Mcgoverin C M, Lewis K, Yang Xu, et al. The contribution of bone and cartilage to the near-infrared spectrum of osteochondral tissue [J]. Applied Spectroscopy, 2014, 68(10):1168-1175. 10.1366/13-07327 [百度学术]
Afara I O, Prasadam I, Arabshahi Z, et al. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy[J]. Scientific Reports, 2017, 7(1): 11463. 10.1038/s41598-017-11844-3 [百度学术]
FU Juan-Juan, MA Dan-Ying,TANG Jin-LAN , et al. NIR spectroscopic study and staging diagnosis of osteoarthritic articular cartilage[J]. Spectroscopy and spectral analysis [百度学术]
符娟娟, 马丹英, 唐金兰,等。 骨关节炎软骨的近红外光谱学研究及分期诊断. 光谱学与光谱分析(已录用)). [百度学术]
ZHONG Ming-Jin, LIU Zhen-Long, ZHANG Ji-Ying. Early treadmill exercise has no hamful effect on articular cartilage in the rabbits after transection of anterior cruciate ligament[J]. Chin J Sports Med [百度学术]
钟名金, 刘振龙, 张继英, 等。 跑台运动对兔前交叉韧带断裂后膝关节软骨的影响. 中国运动医学杂志),2016,35(4):38-45. [百度学术]
YIN Jian-Hua, FU Juan-juan, ZHAO Yuan, et al. Polyamide resins: CN Patent, CN211505205U [P]. 2020-09-15. 10.17660/actahortic.2015.1089.49 [百度学术]
Zhao Y, Lu Y F, Zhu Y K, et al. Submillimetric FTIR detection of articular cartilage by home-made ATR-MIR-Hollow optical fiber probe [J]. Infrared Physics and Technology. 2019, 98:236-239. 10.1016/j.infrared.2019.03.032 [百度学术]
GAO Jing, HAN Guang, LU Qi-Peng. Propagation of near-infrared light in skin tissue and the design of optical fiber detection structure [J]. Acta Photonica Scinica [百度学术]
高静, 韩光, 卢启鹏。 近红外光在皮肤组织中的传播和光纤探测结构设计. 光子学报), 2018, 1:155-161. [百度学术]
Patel S, Bhavsar C D. Analysis of pharmacokinetic data by wilk’s lambda (An important tool of manova) [J]. International Journal of Pharmaceutical Science Invention. 2013, 2 (1):36-44. [百度学术]
Zhao Y, Ma D Y, Fu J J, et al. Preliminary study on discrimination of healthy and osteoarthritic articular cartilage of canine by hollow fiber attenuated total reflection Fourier transform infrared spectroscopy and Fisher's discriminant analysis [J]. Vibrational Spectroscopy,2020, 109:103090. 10.1016/j.vibspec.2020.103090 [百度学术]