摘要
测量了金属腔量子阱红外探测器在斜入射条件下的光电流谱,斜入射条件分为入射面垂直于器件长轴和平行于器件长轴两种情形。从实验和理论上研究了金属腔共振模对入射角度的依赖性。实验结果表明:入射面垂直于器件长轴时,腔模共振波长不随入射角度变化;入射面平行于器件长轴时,腔模共振波长随入射角度变大而向短波移动。测试结果和推导出的共振波长与入射角度的关系式所计算的结果符合的很好。同时也对比、分析了Fabry-Pérot滤光器和等离激元滤光器的透射峰值波长与入射角度的关系,结果表明金属腔量子阱红外探测器具有相对较好的角度稳健性,并且利用三维金属腔的限制作用有望开发出响应波长对入射角度完全不敏感的量子阱红外探测器。
红外光谱成像技术不仅能够获取目标辐射的强度信息,还能获取目标辐射的光谱信息,因而对目标的识别能力更强,目前片上集成光谱探测功能的红外探测器在仪器小型化和低功耗等方面显示出明显的优势,是发展新一代红外探测器的重
量子阱红外探测器(quantum well infrared photodetector,QWIP)具有均匀性好、工艺成熟、可用于大面阵红外焦平面、探测波长可通过能带工程调节以及容易实现多色探测等优点。量子效率低和只能吸收正入射光的偏振选择性是量子阱红外探测器的主要缺点,曾被认为会阻碍量子阱红外探测器的进一步发展。不过随着量子阱红外探测器技术的发展,在很多应用场景中,研究人员发现量子阱红外探测器技术具有独特的功能优势,比如片上集成的具有偏振探测和/或多光谱探测功能的量子阱红外探测
金属腔量子阱红外探测器的结构如

图1 金属腔量子阱红外探测器结构以及斜入射光示意图(a)入射面垂直于腔轴,(b)入射面平行于腔轴
Fig. 1 Schematic diagram of the MC-QWIP and the oblique incident light (a) The incident plane is perpendicular to the cavity axis, (b) the incident plane is parallel to the cavity axis
本文所测器件是用两片具有不同下电极层厚度的量子阱材料外延片加工而成,其中一片下电极层厚度为500 nm,另一片700 nm,分别标记为M1和M2。通过刻蚀工艺将量子阱材料刻蚀出台面和光栅结构,这一步工艺确定了探测器的台面尺寸,其中台面宽度w和材料厚度h决定了最后所形成金属腔的尺寸。在蒸镀Ti/Au以包裹台面形成金属腔前,还需要在台面上镀一层绝缘介质膜包裹台面侧壁,这是为了防止台面侧壁的Ti/Au膜短路上、下电极,这里采用~50 nm HfO2作为绝缘膜。
本文所制备的器件是长条形,长度200 μm远大于入射光波长,因而可以将器件的金属腔看作宽为w、高为h的二维金属腔。制备好的器件封装在真空制冷杜瓦内进行光电流谱测试,正入射光沿z轴从金属腔底部入射到腔内,将真空制冷杜瓦沿水平方向旋转一定角度,入射到器件的光就是斜入射光,这时就可以测量器件对斜入射光的光谱响应特

图2 金属腔量子阱红外探测器在斜入射条件下的光电流谱(a)、(b)入射面垂直于腔轴,(c)、(d)入射面平行于腔轴
Fig. 2 The photocurrent spectra of the MC-QWIP under oblique incidence (a), (b) The incident plane is perpendicular to the cavity axis, (c), (d) The incident plane is parallel to the cavity axis
, | (1) |
其中M,N是腔模在x,z方向上的模数,neff是腔内材料的有效折射率。对于斜入射光,从
当入射面垂直于腔轴(y轴)时,入射光波矢如
, | (2) |
其中k和k0分别是入射光在腔内材料和空气中的波矢。将波长代入上式即可得式
当入射面平行于腔轴时,入射光波矢如
, | (3) |
其中ky = k0sinθ是由于波矢在界面处的切向分量守恒。根据上式可得腔模的共振波长为:
, | (4) |
在θ = 0°时,

图3 MC-QWIP腔膜共振波长与入射角度的关系,散点数据是从实验所测的光电流谱中提取出来的,曲线数据是根据式(1)和(4)计算出来的
Fig. 3 Resonant wavelength versus the incident angle for the MC-QWIP. The scatter data are extracted from measurements and the solid lines are calculated according to Eq.1 and 4
, | (5) |
其中N为干涉级,n为Fabry-Pérot腔中介质的折射率,d为腔体间隙,以及φ(λ)为反射相变。计算所采用的参数值为N = 1,n = 2,d = 2 μm,以及φ(λ) = 0。对于等离激元滤光器,计算透射峰值波长的式
, | (6) |
其中N为衍射阶数,εm和εd分别为金属和介质的介电常数,p为等离激元滤波器的光栅周期。计算所采用的参数值为N = 1,εm = -2 100+1 600i,εd = 16,p = 2 μm。

图4 Fabry-Pérot滤光器和等离激元滤光器的透射峰值波长与入射角度的关系
Fig. 4 Transmission peak wavelength versus the incident angle for Fabry-Pérot filter and plasmonic filter
从计算结果可以看到Fabry-Pérot滤光器的入射角度依赖性与MC-QWIP在平行入射时的情况类似,波长随入射角度的偏移率在0°附近和90°附近都很小,而在中间角度时偏移率较大。对于等离激元滤光器,波长偏移率在较小角度时较大,随着角度增加而逐渐减小。值得注意的是,同样的入射角度变化下,MC-QWIP的波长偏移量远小于两种滤光器的波长偏移量。比如入射角度从0°(峰值波长8 μm)变化到25°时,等离激元滤光器和Fabry-Pérot滤光器的波长偏移量分别为0.85 μm和0.37 μm,相对偏移分别为10.5%和4.6%,远大于MC-QWIP在斜入射面平行于腔轴时的波长偏移,表明MC-QWIP器件具有相对较好的角度稳健性。
令,将
. | (7) |
从上式可以看出0°附近的波长偏移量与折射率平方成反比。同样的,
, | (8) |
这里用到了近似条件,nd是等离激元滤光器中介质的折射率。对比
金属谐振腔型量子阱红外探测器具有良好的谐振选频能力,因此是实现片上集成多光谱探测器的理想选择。本文针对光谱探测器中普遍关注的光谱响应对入射角度的敏感性问题,研究了金属谐振腔型量子阱红外探测器光谱响应与入射角度的依赖关系。器件的测试结果以及计算分析表明:当入射面垂直于腔轴方向时,腔模共振波长不随入射角度变化;而当入射面平行于腔轴时,腔模共振波长随入射角度变大而向短波偏移。不过在同样斜入射角度下,金属谐振腔型量子阱红外探测器响应光谱的峰位变化远小于Fabry-Pérot滤光器和等离激元滤光器的峰位变化。而且从金属腔对入射波矢的限制作用可以推断出金属侧壁在消除角度依赖性方面起着重要作用,如果在腔轴方向上也制备出金属侧壁(即形成3D金属腔),那么即使入射面平行于腔轴,共振波长也不会随入射角变化而改变,从而可以获得对入射角度完全不敏感的窄带光谱探测器。
References
Talghader J J, Gawarikar A S, Shea R P. Spectral selectivity in infrared thermal detection [J]. Light: Science & Applications, 2012, 1(8): e24. 10.1038/lsa.2012.24 [百度学术]
Bhargava R. Infrared spectroscopic imaging: The next generation [J]. Applied Spectroscopy, 2012, 66(10): 1091-1120. 10.1366/12-06801 [百度学术]
Hinnrichs M, Massie M A. Image multispectral sensing: A new and innovative instrument for hyperspectral imaging using dispersive techniques [J]. SPIE, 1995, 2480: 93-104. 10.1117/12.210911 [百度学术]
Hinnrichs M. Imaging spectrometer for fugitive gas leak detection [J]. SPIE, 1999, 3853: 152-161. 10.1117/12.372849 [百度学术]
Rogalski A. Next decade in infrared detectors [J]. SPIE, 2017, 10433: 104330L. 10.1117/12.2300779 [百度学术]
Neumann N, Hiller K, Kurth S. Micromachined mid-infrared tunable Fabry-Perot filter [J]. IEEE, 2005, 1: 1010-1013. 10.1109/sensor.2005.1496626 [百度学术]
Neumann N, Ebermann M, Kurth S, et al. Tunable infrared detector with integrated micromachined Fabry-Perot filter [J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2008, 7(2): 021004. 10.1117/1.2909206 [百度学术]
Enomoto T, Tanemura T, Yamashita S, et al. Multi-gas sensor by infrared spectrometer[C]. Proceedings of the FISITA 2012 world automotive congress: Volume 6: Vehicle electronics, 2013, Berlin: Springer, 2013: 611-620. 10.1007/978-3-642-33829-8_57 [百度学术]
Mao H, Silva K K M B D, Martyniuk M, et al. MEMS-Based Tunable Fabry–Perot Filters for Adaptive Multispectral Thermal Imaging [J]. Journal of Microelectromechanical Systems, 2016, 25(1): 227-235. 10.1109/jmems.2015.2509058 [百度学术]
Mao H, Tripathi D K, Ren Y, et al. Large-area MEMS tunable Fabry–Perot filters for multi/hyperspectral infrared imaging [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(2): 45-52. 10.1109/jstqe.2016.2643782 [百度学术]
Xu D, Wang Y, Xiong B, et al. MEMS-based thermoelectric infrared sensors: A review [J]. Frontiers of Mechanical Engineering, 2017, 12(4): 557-566. 10.1007/s11465-017-0441-2 [百度学术]
Liang Y, Zhang S, Cao X, et al. Free-standing plasmonic metal-dielectric-metal bandpass filter with high transmission efficiency [J]. Scientific Reports, 2017, 7(1): 4357. 10.1038/s41598-017-04540-9 [百度学术]
Wang A, Dan Y. Mid-infrared plasmonic multispectral filters [J]. Scientific Reports, 2018, 8(1): 11257. 10.1038/s41598-018-29177-0 [百度学术]
Dao T D, Ishii S, Doan A T, et al. An on-chip quad-wavelength pyroelectric sensor for spectroscopic infrared sensing [J]. Advanced Science, 2019, 6(20): 1900579. 10.1002/advs.201900579 [百度学术]
Xu J, Wang A, Dan Y. Plasmonic micropipe spectral filters in mid-infrared [J]. Optics Letters, 2019, 44(18): 4479-4482. 10.1364/ol.44.004479 [百度学术]
Choi K K, Lin C H, Leung K M, et al. Broadband and narrow band light coupling for QWIPs [J]. Infrared Physics and Technology, 2003, 44(5–6): 309-324. 10.1016/s1350-4495(03)00150-6 [百度学术]
Mitra P, Case F C, McCurdy J H. LWIR multispectral quantum well infrared photodetectors [J]. SPIE, 2003, 5074: 725-734. 10.1117/12.497402 [百度学术]
Mitra P, Case F C, McCurdy J H, et al. Multispectral long-wavelength quantum-well infrared photodetectors [J]. Applied Physics Letters, 2003, 82(19): 3185-3187. 10.1063/1.1573354 [百度学术]
Choi K K, Dang G, Little J W, et al. Quantum grid infrared spectrometer [J]. Applied Physics Letters, 2004, 84(22): 4439-4441. 10.1063/1.1758785 [百度学术]
Zhou Y W, Li Z F, Zhou J, et al. High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors [J]. Scientific Reports, 2018, 8(1): 15070. 10.1038/s41598-018-33432-9 [百度学术]
Nie X, Zhen H, Huang G, et al. Strongly polarized quantum well infrared photodetector with metallic cavity for narrowband wavelength selective detection [J]. Applied Physics Letters, 2020, 116(16): 161107. 10.1063/5.0002012 [百度学术]
Jing Y, Li Z, Li Q, et al. Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector [J]. AIP Advances, 2016, 6(4): 045205. 10.1063/1.4947036 [百度学术]