摘要
采用刻蚀技术形成台面结构的红外探测器光敏元,其表面漏电流和器件热稳定性与半导体蚀刻表面的特性密切相关。对制备的InAs/GaSb II类超晶格中波红外探测器台面蚀刻区域特性进行了研究报道。通过台面结栅控结构和快速热退火相结合的实验研究,发现热退火处理使得样品在温度80 K,偏置电压-0.05 V下的暗电流密度从2.17×1
自从二十世纪90年代初Smith和Mailhiot提出了InAs/Ga(In)Sb二类超晶格材料可以用于红外探测器制备的设
InAs / GaSb II类超晶格红外探测器的制备通常采用台面结结
本文对InAs/GaSb II 类超晶格中波红外探测器的台面侧壁特性进行了分析研究。通过快速热退火处理工艺发现退火后探测器的暗电流增加,利用台面结栅控结构发现退火后器件的侧壁表面处于电子积累状态,导致表面能带弯曲,产生严重的表面漏电,最后结合退火和未退火样品随栅压的转移特性曲线,并利用台面蚀刻区域X射线光电子能谱(XPS)测试对超晶格中波探测器的表面物化特性进行了讨论。
文中的超晶格红外探测器通过固态源分子束外延技术进行生长制
采用该材料共制备两组探测器样品,所有探测器台面均采用常规的光刻工艺和电感耦合等离子体(ICP)干法刻蚀形成,刻蚀气体为Cl2/N2体系,光敏元台面面积为200 μm×400 μm,具体工艺信息见

图1 InAs/GaSb超晶格探测器台面结构示意图(a)栅控结构器件,(b)无钝化器件
Fig.1 Schematic diagrams of mesa-structured InAs/GaSb superlattice detectors (a) gate-controlled structure device, (b) device without passivation
所有器件制备完成后,2号、4号样品进行了250 ℃、1 min氮气氛围下的快速热退火(RTA)处理,该温度对应电极金属化所需温度,同时也是器件在后续制备过程中可能经受的最高工艺温度。
最后所有器件封装至液氮杜瓦中对光电特性进行测试。利用傅里叶变换红外光谱仪进行了响应光谱特性测试;黑体响应测试则采用温度为800 K的标准黑体,信号采集由前置放大器和锁相放大器完成;通过Keythley4200测试系统进行了器件暗电流-电压特性测试。所有测试均在液氮温度下进行。探测器台面XPS测试扫描步长100 meV,积分时间200 ms。

图2 液氮温度下的器件响应光谱
Fig. 2 Response spectrum of device at liquid-nitrogen temperature

图3 栅控器件样品的电流-电压特性曲线
Fig. 3 Current-voltage curves of gate-controlled devices
为了对探测器退火前后暗电流特性的变化因素进行分析,通过施加栅压对两个器件的电流-电压特性进行了系统测试。栅控结构能够通过栅极电压控制侧壁表面势,从而推算零栅压下,器件的表面电学状

图4 栅控器件暗电流密度(-0.05 V)随栅极偏压的变化曲线
Fig. 4 The transfer characteristic curves of the gate-controlled devices at -0.05 V bias
为了对上述现象进行分析讨论,
, | (1) |
其中,为Si3N4相对介电常数,取 =7.

图5 光敏元侧壁表面器件示意图 (a)电子聚集,(b)空穴聚集注:红色区域为强电场区
Fig. 5 Schematic diagrams of sidewall under (a) electron accumulation and ( b) hole accumulation at surface Note:The red areas indicate high electric field regions
为了对退火前后样品表面漏电特性变化的起因进行进一步地分析,对第二组未钝化样品也进行了电流-电压曲线测试,在偏压为-0.05 V时,3号样品的暗电流密度是2.17×1
, | (2) |
. | (3) |

图6 第二组样品Sb 3d5/2元素峰的XPS测试结果
Fig. 6 Sb 3d5/2 XPS spectra of sample 3 and sample 4
如果器件蚀刻表面存在锑氧化物,那么退火过程中超晶格表面的GaSb将与锑氧化物反应生成Sb单质,并且Sb的金属功函数为4.55 eV,i型超晶格材料的费米能级约为4.75 eV,两者产生的功函数差将使得台面结侧壁表面能带向下弯曲,表面处于电子聚集状态,同时,Sb单质的增加也改变了表面电荷密
对InAs/GaSb II类超晶格中波光电探测器台面结光敏元蚀刻表面特性进行了研究,经过250℃ 60 s的RTA后,超晶格探测器的暗电流密度从2.17×1
References
Smith D L, Mailhiot C. Proposal for strained type II superlattice infrared detectors[J]. Journal of Applied Physics, 1987, 62(6): 2545-2548. 10.1063/1.339468 [百度学术]
Xu J J, Xu Z C, Bai Z Z, et al. Effects of etching processes on surface dark current of long-wave infrared InAs/GaSb superlattice detectors[J]. Infrared Physics & Technology, 2020, 107:103277. 10.1016/j.infrared.2020.103277 [百度学术]
Delmas M, Debnath M C, Liang B L, et al. Material and device characterization of Type-II InAs/GaSb superlattice infrared detectors[J]. Infrared Physics & Technology ,2018, 94:286-290. 10.1016/j.infrared.2018.09.012 [百度学术]
Ying Chen, Jiafeng Liu, Yu Zhao, et al. MOCVD growth of InAs/GaSb type-II superlattices on InAs substrates for short wavelength infrared detection[J]. Infrared Physics & Technology, 2020, 105:103209. 10.1016/j.infrared.2020.103209 [百度学术]
HU Wei-Da, LI Qing, CHEN Xiao-Shuang, et al. Recent progress on advanced infrared photodetectors[J]. Acta Phys. Sin. (胡伟达, 李庆, 陈效双, 等。 具有变革性特征的红外光电探测器。物理学报), 2019, 68(12): 120701-35. 10.7498/aps.68.20190281 [百度学术]
Ting D Z -Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector[J]. Appl. Phys. Lett. 2009, 95: 183502. 10.1063/1.3177333 [百度学术]
Gautam N, Plis E, Kim H S, et al. Heterostructure band engineering of Type-II InAs/Ga Sb superlattice based long-wave infrared photodiodes using unipolar current blocking barriers[J]. Proc. of SPIE, 2010, 7660, doi: 10.1117/12.849889. [百度学术]
Walther M, Rehm R, Fuchs F, et al. 256×256 focal plane array midwavelength infrared camera based on InAs/GaSb short-period superlattices[J]. J. Electron. Mater. 2005, 34(6): 722-725. 10.1007/s11664-005-0010-z [百度学术]
Rodriguez J B, Plis E, Bishop G, et al. NBn structure based on InAs/GaSb type-II strained layer superlattices[J]. Applied Physics Letters, 2007, 91(4):39-1. 10.1063/1.2760153 [百度学术]
Haddadi A, Dehzangi A, Chevallier R, et al. Extended short–wavelength infrared nBn photodetectors based on type–II InAs/AlSb/GaSb superlattices with a large-bandgap AlAsSb/GaSb superlattice-based electron barrier[J]. Applied Physics Letters, 2017, 110(11):10.1063. 10.1063/1.4978378 [百度学术]
Yang R Q, Tian Z B, Klem J F, et al. Interband cascade photovoltaic devices[J]. Applied Physics Letters, 2010, 96(6):1074. 10.1063/1.3313934 [百度学术]
Zhou Y, Chen J, Xu Z, et al. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages[J]. Semiconductor science and technology, 2016, 31(8):085005.1-085005.6. 10.1088/0268-1242/31/8/085005 [百度学术]
Delaunay PY, Nguyen B M, Hoffman D, et al. 320 × 256 infrared focal plane array based on type-II InAs/GaSb superlattice with a 12-µm cutoff wavelength[J]. SPIE, 2007, 6542:10. 10.1117/12.723832 [百度学术]
Gunapala S D, Ting D Z, Hill C J, et al. Demonstration of a 1024 x1024 pixel InAs–GaSb superlattice focal plane array[J]. IEEE Photonics Technology Letters, 2010, 22 (24), 1856-1858. 10.1109/lpt.2010.2089677 [百度学术]
Manurkar P, Ramezani-Darvish S, Nguyen B M, et al. High performance long wavelength infrared mega-pixel focal plane array based on type-II superlattices[J]. Appl. Phys. Lett. 2010, 97(19):3. 10.1063/1.3514244 [百度学术]
Haddadi A, Ramezani-Darvish S, Chen G, et al. High operability 1024×1024 long wavelength Type-II superlattice focal plane array[J]. IEEE J. Quantum Electron. 2012, 48(2):221-228. 10.1109/jqe.2011.2175903 [百度学术]
Hoang A M, Dehzangi A, Adhikary S, et al. High performance bias-selectable three-color short-wave/mid-wave/long-wave infrared photodetectors based on Type-II InAs/GaSb/AlSb superlattices[J]. Scientific Reports, 2016, 6(1):24144-24144. 10.1038/srep24144 [百度学术]
XU Jia-Jia, JIN Ju-Peng, XU Qing-Qing, et al. 128×128 infrared focal plane array based on Type-II superlattice[J]. Journal of Infrared and Millimeter Waves(许佳佳, 金巨鹏, 徐庆庆, 等.128×128元InAs/GaSb Ⅱ类超晶格红外焦平面探测器. 红外与毫米波学报),2012,31(06):501-504. 10.3724/sp.j.1010.2012.00501 [百度学术]
XU Qing-Qing, CHEN Jian-Xin, ZHOU Yi, et al. Mid-wave infrared InAs/GaSb superlattice grown by molecular beam epitaxy[J]. Journal of Infrared and Millimeter Waves. 10.3724/sp.j.1010.2011.00406 [百度学术]
徐庆庆, 陈建新, 周易, 等. InAs/GaSb 超晶格中波焦平面材料的分子束外延技术. 红外毫米波学报), 2011, 30(5):406-408. 10.3724/sp.j.1010.2011.00406 [百度学术]
Chen G, Nguyen B, Hoang A M, et al. Elimination of surface leakage in gate controlled type-II InAs/GaSb mid-infrared photodetectors[J]. Applied Physics Letters, 2011, 99(18):183503. 10.1063/1.3658627 [百度学术]
Delaunay P Y, Hood A, Nguyen B M, et al. Passivation of type-II InAs/GaSb double heterostructure[J]. Applied Physics Letters, 2007, 91(9):1112. 10.1063/1.2776353 [百度学术]
Hinkle C L, Milojevic M, Brennan B, et al. Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning[J]. Appl Phys Lett, 2009, 94: 162101. 10.1063/1.3120546 [百度学术]
SHI Min, WU Guo-Jue. Physics of semiconductor devices(Third Edition)[M]. Xi’an Jiaotong University Press(施敏,伍国珏. 半导体器件物理(第三版). 耿莉,张瑞智译).西安交通大学出版社,2008:151-163. [百度学术]
NIST X-ray photoelectron dpectroscopy database, version3.5, http://srdata.nist.gov/xps/ (2003). 10.6028/nist.tn.1289 [百度学术]
Schwartz G P. Analysis of native oxide films and oxide-substrate reactions on III–V semiconductors using thermochemical phase diagrams [J].Thin Solid Films, 1983, 103:3-16. 10.1016/0040-6090(83)90420-0 [百度学术]
Schwartz G P, Gualtieri G J, Griffiths J E, et al. Oxide‐substrate and oxide‐oxide chemical reactions in thermally annealed anodic films on GaSb, GaAs, and GaP[J]. Journal of the Electrochemical Society, 1980:2488-2499. 10.1149/1.2129502 [百度学术]