引言
三元化合物半导体材料I
nx Ga1-x As在波长0.86 μm至3.5 μm范围内可用于制作超高速光电器件[1,2,3,4] ,如异质结双极晶体管(HBT)[5] 、高电子迁移率场效晶体管(HEBTs)[6] 和场效应晶体管[7] 等.此外,晶格匹配的In0.53 Ga0.47 As/InP异质结可应用于0.9 ~ 1.7 μm近红外波段光电探测.雪崩光电二极管(APD)是长距离和高比特率光纤通信系统中最重要的结构之一,InGaAs/InP APD具有高响应和暗电流小等优点,在单光子探测中应用很普遍,目前受到广泛关注.而InGaAs/InP PIN光电二极管具有制作简单、高带宽、高灵敏度以及噪声小等优点,也在短波红外探测有广泛应用,因此迫切需要制备高质量的InGaAs/InP外延材料.判断材料性能需要研究其微观结构以及光学和电学性能,因此需要优化InGaAs/InP生长条件,获得很高的晶体质量和界面质量等,从而获得高性能的光电特性.通常,InGaAs APD或PIN等器件性能强烈依赖于InGaAs / InP的异质界面和InGaAs薄膜的外延质量.而目前利用固态源生长InGaAs外延材料,一般利用A
s2 (利用As裂解源产生)或者As4 生长,由于As2 与As4 吸附系数不同,生长出的InGaAs/InP界面质量也不同.直接用As2 生长InGaAs/InP界面处很可能会出现V族原子扩散现象.本实验室前期研究[8] 发现InGaAs/InP的反常As扩散行为,表明界面处的扩散是由于As原子扩散进InP层中形成了InxAs1- xP组分渐变层.但该扩散现象对材料电学和光学性能的影响还没有研究.据文献报道用A
s2 生长InGaAs相对于As4 生长光致发光效率明显提高,相关的InGaAs PIN光电二极管的暗电流也大大减少[9] .同时高生长速率时,利用As2 生长的InGaAs薄膜具有更好的表面均匀性[10,11] .因此在本研究中主要的InGaAs外延薄膜材料是利用As2 生长的.但如何得到高质量的InGaAs/InP 异质结是一大问题.这主要由于外延层之间的原子扩散和生长表面处的原子交换可能导致一些缺陷和非陡峭的界面[12,13] .而由于As与P相比具有高掺入率,在InP上生长InGaAs,As2 在InP表面的吸附系数远大于As4 , As2 原子很容易掺入InP层中,可进一步增加As和P的互扩散,导致界面质量明显下降.另外有研究表明在InP上生长InGaAs,使用As2 容易形成缺As的表面,所以需要更大的束流[14] .因此直接利用As2 在InP上生长InGaAs 很难获得高质量的InGaAs/InP异质结.本文进一步探索InGaAs/InP异质结的全固源分子束外延生长,对比了在生长InP缓冲层之后,使用A
s4 生长InGaAs过渡层后再用As2 生长InGaAs和直接利用As2 生长InGaAs外延薄膜的光学和电学性能,表明InP/InGaAs(As2 )界面处使用As4 束流生长一层InGaAs后显著增强电学性能,明显增强了低温迁移率,并提升其光学性能.1 实验过程
本文利用分子束外延系统(MBE) (DCA P600,芬兰)在2 inch InP衬底上生长InGaAs外延薄膜.该MBE系统配有三温区阀控磷裂解炉和两温区阀控砷裂解炉,并全部使用固态源.通过调试和维护,该MBE系统稳定,对于同样条件生长的材料重复性很好.衬底为AXT的半绝缘的InP(100)衬底,InP衬底在预处理室300 ℃下除气20 min,然后传到生长室中.升高衬底温度直到反射高能电子衍射(RHEED)图案明显转变为2×4表面再构,然后升高30 ℃脱氧7~8 min(衬底的热电偶显示温度约为 640 ℃,红外测温仪显示的表面温度为550 ℃左右).然后降低到合适温度生长.在本生长过程中砷裂解炉在1 100 ℃裂解产生A
s2 分子束,而在600 ℃产生普通的As4 分子束.在本研究中,考虑到利用A
s2 可生长更高质量的InGaAs材料,在InP衬底生长InP 缓冲层后,利用As2 直接生长InGaAs外延层.但在InP缓冲层中发现了明显的As扩散现象,为有效抑制该现象,在生长InP后,先利用As4 生长InGaAs 作为过渡层,然后再利用As4 生长InGaAs外延层.样品的结构见表1.其中样品A和B的InP缓冲层分别在As2 和As4 环境下保持20 s后开始生长InGaAs,InP 缓冲层和InGaAs外延层的生长速率分别是0.9 μm/h和1.0 μm/h.V/III束流比约为20.具体结构见表1.表1 样品结构
Table 1 Sample structure
样品编号 外延层 A 0.5 µm InP+2 µm InGaAs(A s2 )B 0.5 µm InP+0.1 µm InGaAs(A s4 )+1.9 µm InGaAs(As2 )在上述两个样品中,InP生长时的热偶显示的生长温度(Tc)都是550 ℃,相应的高温计测量温度(TP)约为440 ℃ .而InGaAs生长温度热偶显示580 ℃,高温计显示温度为503 ℃.不同的As聚合物(A
s2 , As4 )用于薄膜生长,As裂解炉的裂解区在600℃产生As的四聚物As4 分子束,在1 100 ℃ 产生As的二聚物As2 分子束.样品A在整个过程中使用As2 ,而样品B利用As4 生长0.1 μm的InGaAs过渡层,然后升高裂解区温度到1 100 ℃利用As2 生长InGaAs外延层.As4 和As2 束流的束流(BFM)分别是4.5×10-6 Torr和4.8×10-6 Torr.在本文中用高分辨X射线衍射(Bruker D 80 XRD)、变温光致发光PL和变温霍尔测试对样品的微结构、光学和电学性质进行分析和研究.其中光致发光利用法国HORIBA公司的光谱仪测量,激发光源为532 nm半导体激光器,而探测器为InSb红外探测器,变温范围为8~300 K.而电学测量利用常规的四探针霍尔测试方法得到材料的电子迁移率和载流子浓度等.
2 结果与讨论
2.1 不同温度下电学性质研究
在生长InP缓冲层基础上,探索生长高质量的InGaAs薄膜.如表1所示,样品A为直接利用A
s2 生长InGaAs外延层.样品B利用As4 生长一薄的InGaAs过渡层,在此基础再利用As2 生长InGaAs薄膜.样品A和样品B的迁移率随温度变化关系图1(a).由于在生长InGaAs 前生长了较薄InP 缓冲层,为了验证InP缓冲层是否有影响,测量了样品B的InGaAs电阻约为4 kΩ,将其InGaAs层腐蚀掉后,测量结晶质量好的InP缓冲层的电阻约为9 MΩ,超过InGaAs电阻多三个量级以上,因此可以忽略生长结晶质量好的InP缓冲层的影响.由图1可见上述两样品总体的电子迁移率随着温度的降低先升高再降低.图1 (a) InGaAs/InP薄膜(样品A)迁移率随温度变化关系,其中实心点为实验值,虚线为拟合曲线,(b) 样品B迁移率随温度变化
Fig.1 (a) Temperature dependence of the mobilityof InGaAs/InP film (samples A), where the solid point is the experimental value and the dotted line is the fitted curve,(b) temperature dependence of the mobility of InGaAs/InP film (samples B)
但从图1可见样品A和样品B也有显著的不同.对于样品A,发现在较高温度(大于150 K左右),随着温度的降低,迁移率升高.但温度低于120 K电子迁移率迅速下降,在50 K左右,电子迁移率只有140 c
m2 /Vs左右.当温度低于50 K, 随着温度降低(到15 K),样品A的迁移率基本不变(约105 cm2 /Vs 左右),具体见图1 (a)插图.对于样品B,和目前报道的InGaAs薄膜的电子迁移率随温度的变化大体一致:随着温度的降低,电子迁移率升高较快,当到达40 K左右迁移率超过60 000 cm2 /Vs,而后电子迁移率稍有下降,但总体变化不大.这表明这两样品在低温下电学性质显著差异.下面对相关机理作进一步分析.目前研究表明,对于在晶格匹配或轻微失配的高质量InGaAs/InP薄膜中,主要有三种散射机制存在,分别在不同温度下占主导.载流子迁移率受这些散射机制叠加作
用[15] .对于本文InGaAs样品A的迁移率和温度的依赖性可通过电离杂质散射、合金散射和光学声子散射的竞争来说明.根据Mathiessen 规则,利用以下式子[15] 拟合了所测量的霍尔迁移率的温度依赖性:其中,µmeasured是实验测得的迁移率,µimpurity,
µalloy 和µphonon分别是电离杂质散射、合金散射和光学声子散射对迁移率影响的部分.分别将三种散射机制与温度的关系式代入:其中γ取1.5~2.
6[15] ,γ=2时拟合得最好,通过调整系数A、B和C决定拟合程度.由图1(a-b)中看出其与实验数据(温度从50 K到300 K范围)得到了很好的拟合.拟合参数见表2.从该表初步可见,两样品的系数B, C值差别不是很大,表明合金散射和光学声子散射对两样品的迁移率有一定影响但不是很大.但两样品的系数A(对应样品A和B 分别为35和280)差别很大,接近一个量级,表明低温下电离杂质散射对样品A的影响更加显著.表2 样品A、B变温迁移率测试结果的拟合参数
Table 2 Test results for mobility of samples A and B at varying temperatures
A B C 样品A 35 4.0×1 05 1.5×1 09 样品B 280 8.8×1 05 8.3×1 08 对于常规InGaAs/InP外延薄膜,低温时迁移率降低是因为电离杂质散射导致的,随着温度的升高电子迁移率的降低是因为合金散射和极性光学声子散射逐渐占主导.通过三种散射与温度的关系进行拟合,样品A和B根据式(2)的拟合结果在图1(a-b)中显示.样品A从50 K至133 K时电离杂质散射占主导,133 K至222 K时合金散射占主导,高于222 K极性光学声子散射占主导.参照式(2)和表2 样品A的A,B值的拟合结果,我们估算在100~50 K范围合金散射所起作用的比例随着温度下降明显(从40%多下降到接近10%).因此低温下合金散射起作用但在下降 ,而对应的电离杂质散射作用显著增强.样品B从15 K到38 K电离杂质散射占主导,38 K至97 K时合金散射占主导,97 K至300 K时极性光学声子散射占主导.温度范围取三种散射机制曲线的交点,样品B在不同温度下对应不同散射见图1(b).
对于样品A,在150 K以上可用上面的机理初步解释.但在低温下,其迁移率显著下降,可能表明低温下的散射和样品B存在显著的差别.样品A和B的InGaAs层的生长参数相同,主要区别在于样品B界面处的A
s4 生长的InGaAs,而样品A一直用As2 生长.低温时的迁移率迅速降低的原因可能源于界面处较厚的InAsP渐变层以及由此形成的粗糙的InGaAs/InP界面,以及相关上层InGaAs外延材料较高的杂质或缺陷密度,下面将进一步说明.之前研
究[8] 表明利用As2 直接在InP上外延生长In0.53 Ga0.47 As,界面处由于As扩散进了InP中,形成组分渐变的Inx As1-x P.图2为样品A和B 的XRD结果,从图可见样品A中InGaAs (400)半峰宽大,且有一些卫星峰,失配度较大,这是由于As, P互扩散形成的组分渐变层Inx As1-x P,同时表明InGaAs外延层存在较大的应力.而样品B中InGaAs的半高宽较小,且没有卫星峰,未见明显的As扩散.用As4 分子束生长在InP上生长InGaAs可以避免扩散是因为As2 和As4 的吸附系数不同,从而使用As4 生长的InGaAs/InP界面更加陡峭,进一步生长的上层InGaAs外延薄膜材料质量更好.在前期研究中[8] 我们同时利用三维原子探针(3DAP),高角环面暗场扫描透射电子显微镜(HAADF-STEM)对As/P 互扩散作了深入研究.可见As的明显扩散,发现利用As2 在InP上生长InGaAs, 在InP 层有上百纳米的渐变的InAsP形成.这样使用As2 生长的InGaAs/InP界面粗糙,有严重的As扩散现象,材料内部应力很大,导致上层InGaAs外延层的质量较差,并且载流子浓度显著增加,因此低温下电离杂质散射显著增强.同时合金散射(InGaAs合金起伏相联系的无序势引起的散射)也有所增强.基于上述因素样品A从133 K 至50 K低温载流子迁移率显著降低.当温度低于50 K,随着温度降低(到15 K),样品A的迁移率基本不变(105 cm2 /Vs 左右),这可能一方面在该低温区电离杂质散射很强,并且合金的散射也较强, 另一方面由于样品 A中 InGaAS/InP 界面粗糙并且有高密度的位错,在低温下界面散射和位错散射等散射也可显著增强,这几种因素共同起作用,导致低温迁移率普遍很低,具体机理还有待于深入研究.而由于As4 生长的InGaAs/InP界面和材料质量的改善,电离杂质散射和合金散射相对变弱,界面质量也显著改善,导致生长有InGaAs(As4 )层的低温迁移率明显要高于不生长InGaAs(As4 )层的样品.因此使用As4 生长InGaAs 过渡层可显著提升材料的电学特性.2.2 不同温度下的光致发光(PL)研究
为了进一步研究利用A
s4 生长InGaAs过渡层对InGaAs/InP薄膜的光学性质的影响,系统研究不同温度下的光致发光特性(PL谱).图3为样品A和样品B在8 ~300 K不同温度下的归一化后的PL光谱图.从图可以看出样品A随着温度升高InGaAs 的PL峰位先蓝移再红移,蓝移了2.1 meV,高于50 K时开始红移.而样品B始终红移,其峰位随温度的变化值可以在图4中看到,样品B没有蓝移现象发生.图3 InGaAs/InP薄膜不同温度下的PL光谱变化 (a)样品A,(b)样品B
Fig.3 PL spectrum changes at different temperatures of InGaAs/InP films (a) sample A,(b) sample B
图4 InGaAs/InP薄膜(样品A和B)的PL峰位随温度变化
Fig.4 PL peak position of InGaAs/InP film (samples A and B) changes with temperature
关于III-V族多元化合材料如AlInAs、GaNAs和GaInNAs等材料体系中,已经有不少变温PL的研
究[16,17,18] ,并观察到显著的S型的温度依赖关系.如对于GaNAs薄膜,由于合金势涨落导致形成相关的局域态(localization states),存在相关激子局域化能级.上述样品A随着温度升高PL峰位先蓝移再红移,可能和此样品存在局域态和相关的局域化能级有关相关.如前面所述,直接在InP上用As2 生长InGaAs, 由于As , P的互扩散明显(特别是As的反常扩散),形成InAsP以及InGaAs/ InP的粗糙界面,上层的InGaAs薄膜晶体质量也显著下降,薄膜缺陷明显增加.InGaAs界面和体内可存在和上述缺陷相关的局域态.随着温度的升高,激子在带尾的高能态上热扩散,如果这种偏移大于带隙能量的常规红移,在一定的温度范围内会发生净蓝移.而随着温度进一步升高,热激活导致激子重新分布,局域化能级消失,蓝移现象也随之消失.为了进一步研究界面控制对InGaAs薄膜的PL特性的影响,测量A样品8 K时变激发功率的PL光谱(如图5(a)所示),随着激发功率从2 mW到60 mW的逐渐升高,PL峰位所对应的能量先蓝移,当激发功率到达20 mW后不变,蓝移了约1.0 meV.这可能由于在低的激发强度下,由于样品可能存在局域态及局域化能级,存在类似的电子态填充现象,激子首先填充最低能量状态.而在高的激发功率下,激子将填充高的能量状态,因此出现蓝
移[19] .而图5(b)为样品B不同功率激发时的PL光谱.由图可见,一方面样品B PL主峰(P1 ,峰位约0.80 eV)半峰宽比样品 A的PL峰明显变窄,表明样品B 材料光学质量的提升. 另外样品BP1 峰随着激发功率变化未发生明显移动.这可能由于InGaAs/InP界面不存在明显的As-P相互扩散,上层InGaAs外延材料质量较好,因此不存在明显的局域化现象,因此荧光峰位不随激发功率变化.另外值得注意的是在图5(b)中,随着激发功率增大,高能端展宽, 并出现一小峰P2 . 此峰P2 随着激发功率增强而增强.P2 和P1 的峰位差从14 meW移动到约19 meV.结合文献中讨论,P1 主峰该是束缚激子复合辐射产生的荧光峰.高能端P2 峰可能和InGaAs导带到价带的跃迁有关,随着激发功率提高,可能将部分束缚激子拆开为自由载流子,于是自由载流子便会产生带间辐射复合跃迁.具体的机理还需要深入研究.3 结论
利用全固源分子束外延技术生长InGaAs外延薄膜,并研究InGaAs/InP界面之间插入一层利用A
s4 生长的InGaAs过渡层对InGaAs(利用As2 生长)外延薄膜的影响.样品通过对XRD、霍尔测试和PL光谱进行细致研究,发现在InP与InGaAs界面处之间用As4 束流生长一层InGaAs后晶体质量提高,低温迁移率明显升高,明显提升了其电学性能.同时局域化现象消失,光学性能也有所提高.References
- 1
Smirnov K J, Davydov V V, Glagolev S F, et al. High speed near-infrared range sensor based on InP/InGaAs heterostructures [J]. Journal of Physics: Conference Series, 2018, 1124:022014.
- 2
Biermann K, Nickel D, Reimann K, et al. Ultrafast optical nonlinearity of low-temperature-grown GaInAs/AlInAs quantum wells at wavelengths around 1.55μm [J]. Applied Physics Letters, 2002, 80(11):1936.
- 3
Carmody C, Tan H H, Jagadish C, et al. Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic applications [J]. Applied Physics Letters, 2003, 82(22):3913-3915.
- 4
Suemitsu T, Yokoyama H, Umeda Y, et al. High-performance 0.1-amp;mu;m-gate enhancement-mode InAlAs/InGaAs HEMTs using two-step-recessed gate technology [J]. Electron Devices IEEE Transactions on, 1999, 46(6):1074-1080.
- 5
Velling P, Agethen M, Prost W, et al. InAlAs/InP/InGaAs heterostructures for RTD and HBT device applications grown by LP-MOVPE using non-gaseous sources [J]. Journal of Crystal Growth, 2000, 221(1-4):722-729.
- 6
Shigekawa N, Furuta T, Suemitsu T, et al. Impact-ionization-induced noise in InGaAs-based 0.1-μm-gate HEMTs [J]. Physica B: Condensed Matter, 1999, 272(1-4): 562-564.
- 7
Dumka D C, Cueva G, Hier H, et al. DC and RF characteristics of doped multichannel AlAs/sub 0.56/Sb/sub 0.44//In/sub 0.53/Ga/sub 0.47/As field effect transistors with variable gate-lengths [J]. IEEE Electron Device Letters, 2001, 22(1): 5–7.
- 8
Zhang Y, Gu Y, Zheng W, et al. Anomalous arsenic diffusion at InGaAs/InP interface [J]. Materials Research Express,2018, 6(3): 035908.
- 9
Huet D. Molecular beam epitaxy of In0.53Ga0.47As and InP on InP by using cracker cells and gas cells [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1985, 3(3):823.
- 10
Sugaya T, Amano T, Mori M, et al. Highly stacked InGaAs quantum dot structures grown with two species of As [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2010, 28(3): C3C4-C3C8.
- 11
Sugaya T, Amano T, Komori K. Improved optical properties of InAs quantum dots grown with an As2 source using molecular beam epitaxy [J]. Journal of Applied Physics, 2006, 100(6):063107.
- 12
Liliental‐Weber Z, Chen Y, Werner P, et al. Interfacial defects and morphology of InGaAs epitaxial layers grown on tilted GaAs substrates [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 1993, 11(4):1379.
- 13
Fujiwara Y, Nonogaki Y, Oga R , et al. Reactor structure dependence of interface abruptness in GaInAs/InP and GaInP/GaAs grown by organometallic vapor phase epitaxy [J]. Applied Surface Science, 2003, 216(1-4):564-568.
- 14
Erickson L P, Mattord T J, Palmberg P W, et al. Growth of Al0.3Ga0.7As by molecular beam epitaxy in the forbidden temperature range using As2 [J]. Electronics Letters, 1983, 19(16):632-633.
- 15
Oliver J D, Eastman L F, Kirchner P D, et al. Electrical characterization and alloy scattering measurements of LPE GaxIn1-xAs/InP for high frequency device applications [J]. Journal of Crystal Growth, 1981, 54(1):64-68.
- 16
Olsthoorn S M, Driessen F A J M, Eijkelenboom A P A M, et al. Photoluminescence and photoluminescence excitation spectroscopy of Al0.48In0.52As [J]. Journal of Applied Physics, 1993, 73(11):7798.
- 17
Buyanova I A, Izadifard M, Chen W M, et al. Hydrogen-induced improvements in optical quality of GaNAs alloys [J]. Applied Physics Letters, 2003, 82(21): 3662-3664.
- 18
Grenouillet L, Bru-Chevallier C, Guillot G, et al. Evidence of strong carrier localization below 100 K in a GaInNAs/GaAs single quantum well [J]. Applied Physics Letters, 2000, 76(16):2241.
- 19
Lourenco S A, Dias I F L, Duarte J L, et al. Temperature dependence of optical transitions in AlGaAs [J]. Journal of Applied Physics, 2001, 89(11):6159-6164.
- 1
摘要
研究了全固态源分子束外延(MBE)生长InGaAs/InP异质结界面扩散对 InGaAs外延薄膜电学和光学性质的影响.通过X射线衍射、变温霍尔测试和变温光致发光等方法对InGaAs薄膜样品进行细致研究.发现在InGaAs/InP界面之间插入一层利用A
Abstract
The effects of interfacial diffusion of InGaAs/InP heterojunction on the electrical and optical properties of InGaAs epitaxial films grown by all-solid source molecular beam epitaxy (MBE) are investigated. The InGaAs thin films are studied by X-ray diffraction, variable temperature Hall and photoluminescence (PL) measurements. It is found that inserting a layer of InGaAs transition layer grown by A