利用地物波谱学习的遥感影像波段模拟方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家高技术研究发展计划(863计划)


METHOD ON SIMULATING REMOTE SENSING IMAGE BAND BY USING GROUND-OBJECT SPECTRAL FEATURES STUDY
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对已有遥感影像模拟方法难以在影像光谱维上扩展的不足,提出了一种基于地物波谱学习的遥感影像波段模拟方法.以地物波谱库作为先验知识,通过支持向量机拟合地物在不同观测波段范围内反射率之间的复杂非线性关系,进而在多光谱遥感影像已有波段的基础上模拟一个新的波段影像.通过模拟TM红波段影像的实验,证明本方法能较为准确地模拟出真实的光谱影像,其模拟结果可靠.进一步将该方法应用于模拟IRS真彩色影像,验证了本方法的实用性.本方法能够有效地解决多光谱影像波段缺损的问题,并在一定程度上可解决较高空间分辨率遥感影像光谱维的不足,为建立地物波谱与遥感像元波谱的定量联系提出了新的思路.

    Abstract:

    This paper proposes a method for remote sensing image band simulation based on spectral features study by SVM. As taking Spectral features into account as a priori knowledge and base on study of the implicit and nolinear relationships between landmark spectrum in the different obands by support vector machine, we simulated a new band through multi-spectral remote sensing image on existing bands. Based on TM blue band simulation experiments,We confirmed that this method can precisely simulate the real spectral images due to high reliability of the simulation results. Furthermore, Simulating IRS true-color experiments verify it is a practical method to reconstruct the missing bands of multi-spectral image. This method could theoretically possible to simulate a new remote sensing image band in arbitrary spectrometer's resolution within spectral range of landmark spectrum measure put forward a new idea for establishing links between landmark spectrum and remote sensing pixel spectrum.

    参考文献
    相似文献
    引证文献
引用本文

程熙,沈占锋,骆剑承,沈金祥,胡晓东,朱长明.利用地物波谱学习的遥感影像波段模拟方法[J].红外与毫米波学报,2010,29(1):45~48]. CHENG Xi, SHEN Zhan-Feng, LUO Jian-Cheng, SHEN Jin-Xiang, HU Xiao-Dong, ZHU Chang-Ming. METHOD ON SIMULATING REMOTE SENSING IMAGE BAND BY USING GROUND-OBJECT SPECTRAL FEATURES STUDY[J]. J. Infrared Millim. Waves,2010,29(1):45~48.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2009-01-23
  • 最后修改日期:2009-08-25
  • 录用日期:2009-04-29
  • 在线发布日期: 2009-12-28
  • 出版日期:
文章二维码