针对不同森林类型条件下协同多源遥感数据估测林下地形
CSTR:
作者:
作者单位:

辽宁工程技术大学 测绘与地理科学学院,辽宁 阜新 123000

作者简介:

通讯作者:

中图分类号:

S757

基金项目:


Understory terrain estimation using multi-source remote sensing data under different forest-type conditions
Author:
Affiliation:

School of Geomatics, Liaoning Technical University, Fuxin 123000, China

Fund Project:

Supported by the National Natural Science Foundation of China (42401488, 42071351), the National Key Research and Development Program of China (2020YFA0608501, 2017YFB0504204), the Liaoning Revitalization Talents Program (XLYC1802027), the Talent Recruited Program of the Chinese Academy of Science (Y938091), the Project Supported Discipline Innovation Team of the Liaoning Technical University (LNTU20TD-23), the Liaoning Province Doctoral Research Initiation Fund Program (2023-BS-202), and the Basic Research Projects of Liaoning Department of Education (JYTQN2023202)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    精确估算林下地形对维持生态系统平衡和生物多样性保护具有重要科学意义。针对传统森林地形反演方法以整体森林作为反演单元时存在的空间异质性表征不足问题,本研究提出基于精细化土地覆盖分类的森林类型差异化建模方法。以波多黎各地区和马里兰州为研究区,通过整合多源遥感数据构建多维特征体系:采用ICESat-2星载激光雷达获取林下地形基准值;基于SRTM数据提取坡度和坡向等地形因子;结合Landsat-8多光谱影像解析植被覆盖特征。本研究将森林类型作为分类建模条件,运用随机森林算法构建差异化地形反演模型。实验结果表明,相较于传统全域建模方法(RMSE=5.06 m),本研究提出的森林类型分类建模使林下地形估算精度显著提升(RMSE=2.94 m),验证了空间异质性建模的有效性。进一步敏感性分析发现,冠层结构参数(RMSE变异达4.11 m)相较于森林覆盖度对估算精度具有更强的调控作用,这为优化森林地形遥感模型提供了重要理论依据。

    Abstract:

    Accurate estimation of understory terrain has significant scientific importance for maintaining ecosystem balance and biodiversity conservation. Addressing the issue of inadequate representation of spatial heterogeneity when traditional forest topographic inversion methods consider the entire forest as the inversion unit, this study proposes a differentiated modeling approach to forest types based on refined land cover classification. Taking Puerto Rico and Maryland as study areas, a multi-dimensional feature system is constructed by integrating multi-source remote sensing data: ICESat-2 spaceborne LiDAR is used to obtain benchmark values for understory terrain, topographic factors such as slope and aspect are extracted based on SRTM data, and vegetation cover characteristics are analyzed using Landsat-8 multispectral imagery. This study incorporates forest type as a classification modeling condition and applies the random forest algorithm to build differentiated topographic inversion models. Experimental results indicate that, compared to traditional whole-area modeling methods (RMSE=5.06 m), forest type-based classification modeling significantly improves the accuracy of understory terrain estimation (RMSE=2.94 m), validating the effectiveness of spatial heterogeneity modeling. Further sensitivity analysis reveals that canopy structure parameters (with RMSE variation reaching 4.11 m) exert a stronger regulatory effect on estimation accuracy compared to forest cover, providing important theoretical support for optimizing remote sensing models of forest topography.

    参考文献
    相似文献
    引证文献
引用本文

黄佳鹏,樊庆南,张玥.针对不同森林类型条件下协同多源遥感数据估测林下地形[J].红外与毫米波学报,2025,44(6):920~933]. HUANG Jia-Peng, FAN Qing-Nan, ZHANG Yue. Understory terrain estimation using multi-source remote sensing data under different forest-type conditions[J]. J. Infrared Millim. Waves,2025,44(6):920~933.]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-08
  • 最后修改日期:2025-11-08
  • 录用日期:2025-02-27
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码