近红外光谱血糖检测中温度扰动判别方法研究
CSTR:
作者:
作者单位:

1.天津大学精密测试技术及仪器国家重点实验室,天津 300072;2.天津大学精密仪器与光电子工程学院,天津 300072

作者简介:

通讯作者:

中图分类号:

O433.4

基金项目:

国家重点研发计划(2023YFD1701801,2023YFD1701802),国家自然科学基金(81971657,81871396),天津市自然科学基金重点项目(20JCZDJC00630)资助项目


Research on discriminant method of temperature perturbation in blood glucose sensing by near-infrared spectroscopy
Author:
Affiliation:

1.State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin, University, Tianjin, 300072, China;2.School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, 300072, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    近红外光谱属于分子振动光谱,样品温度变化造成分子振动及分子间作用力改变,进而产生吸光度及谱峰变化,影响血糖等微弱成分检测精度。为解决温度扰动对于光谱检测及建模分析的影响,提出一种基于水光谱组学与双光谱二维相关光谱(2T2D-COS)的温度扰动判别方法。对仿体溶液在温度扰动及含有不同葡萄糖浓度下的漫反射光谱进行2T2D-COS分析,提取温度和糖浓度变化造成的光谱变化特征,得到不同扰动下的水光谱模式。实验结果表明,温度变化0.1℃与葡萄糖浓度变化45mg/dL强度相当。进一步建立基于原始光谱、水光谱特征和2T2D-COS异步谱的温度扰动异常光谱判别模型,其中基于2T2D-COS异步谱特征的判别模型准确率达到95.83%,剔除异常样本后葡萄糖浓度预测均方根误差降低了51.89%,为提高近红外光谱在体血糖检测的精度提供了基础。

    Abstract:

    Near-infrared spectroscopy is a type of molecular vibration spectroscopy. Temperature variations in the sample cause changes in molecular vibrations and intermolecular forces, which in turn lead to absorption and spectral peak changes, affecting the prediction accuracy of minor components such as blood glucose. To address the impact of temperature perturbation on spectral detection and modeling analysis, a temperature perturbation discrimination method based on aquaphotomics and two-trace two-dimensional correlation spectroscopy (2T2D-COS) was proposed. The 2T2D-COS analysis was applied to diffuse reflectance spectra of simulated solutions under temperature perturbation and varying glucose concentrations. Spectral features induced by changes in temperature and glucose concentration were successfully extracted, revealing distinct water spectral patterns under different perturbations. Quantitative analysis shows that a temperature change of 0.1°C is equivalent to a glucose concentration change of 45 mg/dL in terms of intensity. A temperature perturbation anomaly spectral discrimination model was further established based on raw spectra, water spectral features, and 2T2D-COS asynchronous spectra. The accuracy rates of the models are 75%, 83.33%, and 95.83%, respectively. After removing anomalous samples, the root mean square error of glucose concentration prediction is reduced by

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-02-06
  • 最后修改日期:2025-02-28
  • 录用日期:2025-03-17
  • 在线发布日期:
  • 出版日期:
文章二维码