基于CALIOP数据的气溶胶垂直分布特征聚类分析
CSTR:
作者:
作者单位:

1.中国科学院合肥物质科学研究院 光学定量遥感安徽省重点实验室,安徽 合肥 230031;2.中国科学技术大学,安徽 合肥 230026;3.河南理工大学,河南 焦作 454002

作者简介:

通讯作者:

中图分类号:

P413

基金项目:

航天科技创新应用研究项目(E23Y0H555S1)、航空科技创新应用研究项目(62502510201)、中国科学院重点实验室基金项目(E33Y0HB42P1)


Clustering analysis of aerosol vertical distribution characteristics based on CALIOP data
Author:
Affiliation:

1.Anhui Province Key Laboratory of Optical Quantitative Remote Sensing, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;2.University of Science and Technology of China, Hefei 230026, China;3.Henan Polytechnic University, Jiaozuo 454002, China

Fund Project:

Supported by the Aerospace Science and Technology Innovation Application Research Project (E23Y0H555S1), the Aviation Science and Technology Innovation Application Research Project (62502510201), the Chinese Academy of Sciences Key Laboratory Fund Program (E33Y0HB42P1)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大气气溶胶的垂直分布具有高度复杂特征和时空变异性,是提高卫星遥感气溶胶反演效果的关键影响因素。研究基于2010年至2020年的CALIOP(The Cloud-Aerosol Lidar with Orthogonal Polarization)L3气溶胶剖面数据,采用无监督聚类方法对气溶胶的垂直分布特性进行了系统性研究。通过多个评估指标比较GMM(Gaussian Mixture Model)、K-means、谱聚类三种聚类算法的聚类效果。基于消光系数的垂直分布特征使用GMM聚类方法将气溶胶剖面划分为五种具有代表性的类型:低污染组合型、高污染组合型、指数衰减型、低污染均匀型和高污染振荡型。进一步分析了这些剖面在不同季节以及在青藏高原、京津冀、长三角三个典型地区的时空分布特征。研究结果表明,通过GMM聚类分析得到的气溶胶剖面呈现出显著的季节性和地域性差异。

    Abstract:

    The vertical distribution of aerosols plays a critical role in improving the accuracy of aerosol retrieval in satellite remote sensing due to its complexity and spatiotemporal variability. This study investigated the vertical characteristics of aerosols using unsupervised clustering methods, based on CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Level 3 aerosol profile data from 2010 to 2020. Three clustering algorithms—Gaussian Mixture Model (GMM), K-means, and spectral clustering—were evaluated using multiple performance metrics. The profiles of extinction coefficients were clustered into five representative types using the GMM algorithm: low-pollution composite type, high-pollution composite type, exponential decay type, low-pollution uniform type, and high-pollution oscillatory type. The seasonal and regional distributions of these profile types were further analyzed over the Tibetan Plateau, the Beijing-Tianjin-Hebei region, and the Yangtze River Delta. The results show that aerosol vertical profiles exhibit distinct seasonal and regional patterns. These findings provide a basis for improving aerosol profile parameterization and retrieval accuracy in remote sensing applications.

    参考文献
    相似文献
    引证文献
引用本文

王宇轩,孙晓兵,提汝芳,黄红莲,刘晓,余海啸.基于CALIOP数据的气溶胶垂直分布特征聚类分析[J].红外与毫米波学报,2025,44(6):875~886]. WANG Yu-Xuan, SUN Xiao-Bing, TI Ru-Fang, HUANG Hong-Lian, LIU Xiao, YU Hai-Xiao. Clustering analysis of aerosol vertical distribution characteristics based on CALIOP data[J]. J. Infrared Millim. Waves,2025,44(6):875~886.]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-03
  • 最后修改日期:2025-11-10
  • 录用日期:2025-03-17
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码