基于CALIOP数据的气溶胶垂直分布特征聚类分析
DOI:
CSTR:
作者:
作者单位:

中国科学院合肥物质科学研究院,光学定量遥感安徽省重点实验室

作者简介:

通讯作者:

中图分类号:

P2

基金项目:

航天科技创新应用研究项目(E23Y0H555S1)、航空科技创新应用研究项目(62502510201)、中国科学院重点实验室(E33Y0HB42P1)


Clustering analysis of aerosol vertical distribution characteristics based on CALIOP data
Author:
Affiliation:

Anhui Province Key Laboratory of Optical Quantitative Remote Sensing, HefeiInstitutes of Physical Science, Chinese Academy of Sciences

Fund Project:

Aerospace Science and Technology Innovation Application Research Project (E23Y0H555S1), Aviation Science and Technology Innovation Application Research Project (62502510201), The China High-Resolution Earth Observation System (CHEOS)(30-Y20A010-9007-17/18), and China Center for Resource Satellite Data and Applications Project(E13Y0J31601).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    大气气溶胶的垂直分布具有高复杂性和时空变异性,是提高卫星遥感气溶胶反演效果的重要信息。本文基于2010年至2020年的CALIOP L3气溶胶剖面数据,采用无监督聚类方法对气溶胶的垂直分布特性进行了系统研究。通过多重指标比较GMM、K-means、谱聚类三种聚类算法的聚类效果,基于消光剖面的垂直分布特征使用GMM聚类方法将气溶胶剖面划分为五种具有代表性的类型:低污染组合型、高污染组合型、指数衰减型、低污染均匀型和高污染振荡型。进一步分析了这些剖面在不同季节以及在青藏高原、京津冀、长三角三个典型地区的时空分布特征。研究结果表明,通过聚类分析得到的气溶胶剖面呈现出显著的季节性和地域性差异。

    Abstract:

    The vertical distribution of atmospheric aerosols is highly complex and exhibits significant spatiotemporal variability, providing essential information for improving the accuracy of aerosol retrievals from satellite remote sensing. This study systematically investigates the vertical distribution characteristics of aerosols based on CALIOP L3 aerosol profile data from 2010 to 2020 using unsupervised clustering methods. By evaluating the clustering performance of three algorithms—GMM, K-means, and spectral clustering—using multiple metrics, the GMM clustering method was selected to classify aerosol profiles into five representative types based on the vertical distribution features of extinction profiles: Low-Pollution Composite Type, High-Pollution Composite Type, Exponential Decay Type, Low-Pollution Uniform Type, and High-Pollution Oscillatory Type. Further analysis was conducted on the spatiotemporal distribution characteristics of these profiles across different seasons and three typical regions: the Tibetan Plateau, Beijing-Tianjin-Hebei, and the Yangtze River Delta. The results reveal that the aerosol profiles obtained through clustering analysis exhibit significant seasonal and regional differences.

    参考文献
    相似文献
    引证文献
引用本文
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-01-03
  • 最后修改日期:2025-02-26
  • 录用日期:2025-03-17
  • 在线发布日期:
  • 出版日期:
文章二维码