基于反射层析激光雷达的目标轮廓图像重建
CSTR:
作者:
作者单位:

1.西北工业大学 自动化学院,陕西 西安 710129;2.国防科技大学 脉冲功率激光技术国家重点实验室,安徽 合肥 230037;3.国科大杭州高等研究院,浙江 杭州 310024;4.西安电子科技大学 光电工程学院,陕西 西安 710071

作者简介:

通讯作者:

中图分类号:

O439

基金项目:

国家自然科学基金(61871389);国防科技大学自主创新科学基金(24-ZZCX-JDZ-43); 国防科技大学青年自主创新科学基金(ZK23-45)


Target contour image reconstruction based on reflective tomography LiDAR
Author:
Affiliation:

1.School of Automation, Northwestern Polytechnical University, Xi’an 710129, China;2.State Key Lab. of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China;3.Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;4.School of Optoelectronics Engineering, Xidian University, Xi’an 710071, China

Fund Project:

Supported by the National Natural Science Foundation of China(61871389);the National University of Defense Technology Independent Innovation Scientific Fund(24-ZZCX-JDZ-43);the NUDT Youth Independent Innovation Scientific Fund(ZK23-45)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    反射层析激光雷达(RTL)通过激光探测获取目标回波投影数据以实现目标轮廓重建,但在实际中常因部分角度探测缺失导致投影数据不完备。针对这一问题,本文在已有技术的基础上,创新性地提出了一种联合投影数据结构稀疏特性与超分辨卷积神经网络(SRCNN)的目标轮廓重建方法,有效解决了传统算法在投影数据角度严重缺失情况下的失效问题。与常规RTL成像中直接引入稀疏求解模型的思路不同,本文基于投影数据的几何先验,结合结构稀疏与SRCNN实现投影数据的全角度高分辨反演,继而采用传统RTL成像完成目标轮廓的完整重建。为验证方法有效性,本文进行了基于面元法的激光回波投影数据仿真实验及系统外场实测实验。结果表明,所提方法在不同投影数据缺失条件下均能实现高质量的目标轮廓重建。

    Abstract:

    Reflective tomography LiDAR (RTL) reconstructs target contours by acquiring laser echo projection data, but incomplete angular detection in practice often leads to insufficient projection data. To address this issue, the authors propose a target contour reconstruction method that combines the structural sparsity of projection data with a super-resolution convolutional neural network (SRCNN), based on the principles and technical implementation of RTL. This approach effectively resolves the failure of traditional algorithms when projection data suffers from severe angular deficiency. Different from conventional RTL imaging methods that directly incorporate sparse reconstruction models, the authors first recover full-angle projection data by integrating sparse constraints with SRCNN based on geometry prior of the projection data, followed by standard RTL imaging algorithms to achieve complete target contour reconstruction. To validate the effectiveness of the proposed method, the authors design laser echo projection simulations based on the facet model and conduct field experiments. The results demonstrate that the authors achieve high-quality target contour reconstruction under varying levels of projection data missing conditions.

    参考文献
    相似文献
    引证文献
引用本文

郭睿,楼荑,张鑫源,郭亮,胡以华.基于反射层析激光雷达的目标轮廓图像重建[J].红外与毫米波学报,2025,44(6):828~839]. GUO Rui, LOU Yi, ZHANG Xin-Yuan, GUO Liang, HU Yi-Hua. Target contour image reconstruction based on reflective tomography LiDAR[J]. J. Infrared Millim. Waves,2025,44(6):828~839.]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-18
  • 最后修改日期:2025-11-13
  • 录用日期:2025-02-20
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码