基于PSO-GA-SVM融合算法及荧光激光雷达遥测技术的生物气溶胶浓度预测
CSTR:
作者:
作者单位:

1.北方民族大学 电气信息工程学院,宁夏 银川 750021;2.宁夏回族自治区大气环境遥感探测重点实验室,宁夏 银川 750021

作者简介:

通讯作者:

中图分类号:

P4

基金项目:

国家自然科学基金(42465007、 42105140、 42265009)、宁夏自然科学优秀青年基金(2022AAC05032)、北方民族大学研究生创新项目(YCX24345)


Prediction of bioaerosol concentration based on PSO-GA-SVM fusion algorithm and fluorescence lidar
Author:
Affiliation:

1.School of Electrical and Information Engineering, North Minzu University, Yinchuan 750021, China;2.Key Laboratory of Atmospheric Environment Remote Sensing of Ningxia Province, Yinchuan 750021, China

Fund Project:

Supported by the National Natural Science Foundation of China (42465007, 42105140, 42265009), the Natural Science Outstanding Youth Foundation of Ningxia Province(2022AAC05032), the Graduate Innovation Project of North Minzu University(YCX24345)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    生物气溶胶粒子在空气中传播较广,高浓度的生物气溶胶对人体健康有着极大的危害。为实现大气生物气溶胶浓度的预警预测,本文以荧光激光雷达为探测工具,在获取生物气溶胶浓度廓线的基础上,结合大气环境相关参数,利用粒子群(PSO)和遗传算法(GA)优化支持向量机(SVM),建立生物气溶胶浓度廓线预测模型,通过采用温度、湿度、PM2.5、PM10、CO2、SO2、NO2、O3、风速等相关参数数据作为输入量,生物气溶胶浓度廓线数据作为输出量进行模型训练,确定预测模型参数配置,重新引入新的大气环境参数,利用训练好的模型预测生物气溶胶浓度廓线,并与荧光激光雷达探测的生物气溶胶浓度廓线进行比较,同时分析不同算法优化模型预测的生物气溶胶浓度及其相对误差。

    Abstract:

    Bioaerosol particles spread widely in the air, and high concentrations of bioaerosols pose a great threat to human health. To achieve early warning and prediction of atmospheric bioaerosol concentration, this paper uses fluorescence lidar as the detection tool. Based on the acquisition of bioaerosol concentration profiles, combined with relevant parameters of the atmospheric environment, particle swarm optimization (PSO) and genetic algorithm (GA) are used to optimize the support vector machine (SVM) to establish a bioaerosol concentration profile prediction model. Using temperature, humidity, PM2.5, PM10, CO2, SO2, NO2, O3, wind speed and other related parameter data as inputs, and bioaerosol concentration profile data as outputs for model training, the prediction model parameter configuration is determined. New atmospheric environment parameters are reintroduced, and the trained model is used to predict the bioaerosol concentration profile, which is compared with the bioaerosol concentration profile detected by fluorescence lidar. At the same time, different algorithms are analyzed to optimize the model''s predicted bioaerosol concentration and its relative error.

    参考文献
    相似文献
    引证文献
引用本文

饶志敏,李一成,李一秀,刘佳鑫,巩鑫,赵虎,毛建东.基于PSO-GA-SVM融合算法及荧光激光雷达遥测技术的生物气溶胶浓度预测[J].红外与毫米波学报,2025,44(6):865~874]. RAO Zhi-Min, LI Yi-Cheng, LI Yi-Xiu, LIU Jia-Xin, GONG Xin, ZHAO Hu, MAO Jian-Dong. Prediction of bioaerosol concentration based on PSO-GA-SVM fusion algorithm and fluorescence lidar[J]. J. Infrared Millim. Waves,2025,44(6):865~874.]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-09
  • 最后修改日期:2025-11-07
  • 录用日期:2025-02-28
  • 在线发布日期: 2025-10-24
  • 出版日期:
文章二维码